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𝜎𝜎𝜔𝜔 Blended coefficient for diffusion term of SST specific dissipation equation 
𝜂𝜂2 Empirical constant for source term in SAS model 
𝜅𝜅 0.41; von Karman constant 
Ω Vorticity rate magnitude 

ωu Unresolved specific dissipation 
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ABSTRACT 

This study investigates the accuracy of Computational Fluid Dynamics (CFD) models to 

predict heat transfer in turbulent separated flows at low Reynolds numbers.  A novel 

improvement of a Scale Adaptive technique is also presented.  A spectrum of turbulence 

models is used to simulate flow and heat transfer of two geometries; fully developed flow 

through a staggered tube bank and a square prism in cross flow.  Experimental data for 

both local heat transfer and velocity data are available in the literature for these cases and 

have been used extensively evaluate various CFD methods.  Six unsteady models were 

used and the results show that the unsteady Shear Stress Transport (SST) model provided 

good overall accuracy relative to the mean Nusselt number for both cases.  However, the 

SST model failed to accurately predict local variations.  The Partially Averaged Navier-

Stokes variant of the SST model showed a marked improvement for both cases.  The 

Dynamic Smagorinsky Large Eddy Simulation (LES) showed a much-improved fidelity 

to the local Nusselt but under predicted the actual values.  The computational cost for the 

LES model was significant.  In general, it was found that the computationally expensive 

models with higher degrees of resolved turbulence did not necessarily return more 

accurate results. 

A Scale Adaptive Simulation (SAS) modification of the SST model (SAS-SST) is also 

used in this study.  The SAS approach for the SST model adjusts the production term of 

the specific dissipation transport equation based on the second velocity derivative.  This 

modification is intended to improve the SST model where local flow accelerations/ 
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decelerations are detected, as occurs in separated flows.  However, the local Nusselt 

number for the two cases considered were found to be generally less accurate than the 

baseline SST model.  In this study a novel modification to this model was made to reduce 

the SAS contribution near stagnation points in the simulation.  This was done through the 

Kato-Launder and production limiter modification in the SAS production term.  The 

results showed only a slight improvement of the accuracy of the Nusselt number 

predictions.  It is possible that further adjustments to the SAS terms and constants can be 

made to properly support and complement the stagnation point modification in this study 

and yield an overall better turbulence model. 
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1 INTRODUCTION 

The desire of an industrial Computational Fluid Dynamics (CFD) engineer is to 

accurately predict flow and heat transfer performance for a geometry of interest with 

limited prior knowledge of the flow field.  Many commercial codes are available that can 

allow qualified engineers to create detailed models in significantly shorter project cycles 

than previous decades.  This is aided by the great strides have been made in the creation 

of model geometry through automated meshing and direct geometry import. 

However, accurate solutions are naturally dependent on the selection of models to 

properly capture the physics of the problem.  The non-linear pressure-velocity 

relationship of the Navier-Stokes equations along with the lack of a universal, fast and 

accurate turbulence model makes CFD uniquely challenging when compared to other 

numerical applications like stress-strain analysis.  Commonly used steady, Reynolds 

Averaged Navier-Stokes (RANS) models have limitations that make it difficult to arrive 

at accurate solutions for some problems.  This can be a particular challenge for CFD 

engineers because industrial flow problems are typically turbulent [1] and where 

engineers are looking to extract local heat transfer coefficients to analyze a convection-

conduction (conjugate) problem.   

An inherent characteristic of a conventional, steady conventional RANS method (k-ε[2], 

RNG k-ε[3], k-ω[1], or SST [4]) is the assumption of a single length scale at any location 

in the flow solution when there are in fact multiple length scales in play.  Additionally, 
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these models require calibration of their respective closure coefficients to be used.  This 

calibration is typically performed with boundary layer or free shear flows[1].  For similar 

conditions in an industrial application, these models would be expected to work well.  

However, these methods are less effective in situations where there is significant stream-

line curvature and flow separation.  In these cases, the turbulence production is not in 

equilibrium with the dissipation and the assumptions used to develop these models are no 

longer valid. 

Other issues with RANS models include premature transition to turbulence and a failure 

to return to back laminar flow.  Some authors have attempted to address these limitations 

by developing more sophisticated RANS models.  These include models that attempt to 

prevent non-physical, discontinuous jumps from laminar to  turbulent flows such as the 

Intermittency model [5] and transitional models [6].  Second moment closure models 

such as the Reynolds Stress Model (RSM) remove the isotropic assumption and calculate 

the Reynolds stresses in all 3 directions.  Generally, this model should respond better to 

streamline curvature [1].  However, this refinement comes at a cost of calculating 6 new 

variables in addition to the dissipation term. 

Large Eddy Simulation (LES) [7] is currently believed to be the solution to the persistent 

limitations of the RANS approach.  Unlike Steady RANS (SRANS) where all the length 

scales are modeled, LES resolves the larger eddies in a flow field that are bigger than the 

local filter size, which is typically on the order of the local grid size.  Turbulent scales 

that are smaller than the filter size are modeled through an isotropic eddy viscosity 
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model.  LES is inherently transient in nature and requires sufficient mesh and temporal 

resolution to capture a sufficient amount of the turbulent energy (typically 80%. [8])  The 

fundamental drawback of this method is the increased mesh density and compute time 

required to complete a solution.  Further, flow statistics must be recorded for a sufficient 

number of time steps and then averaged to determine the mean flow characteristics.  The 

result is a significantly increased solution time. 

1.1 Turbulent Energy Cascade 

The spectrum of available CFD methods can be discussed in terms of the turbulence 

energy cascade [7], as shown in Figure 1-1.  The curve represents the turbulent energy, E, 

in a flow as a function of the inverse of the turbulence length scale or wave number.  The 

large scales (lower wave number) generally contain more energy, which break down to 

smaller scales until the Kolmogorov scale is reached and viscous dissipation converts the 

turbulent kinetic energy to heat [8]. 

 

Figure 1-1  Turbulent Energy Cascade,(a), simulation approach for energy cascade for a 
defined separation of scales like that found LES (a). 
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With Direct Numerical Simulation (DNS), a transient solution resolves all of the length 

scales and the turbulent energy cascade of the simulation would be directly represented 

by Figure 1-1a.  However, the mesh and time step size required to do this correctly 

requires computer resources that are not practical for industrial applications.  In an 

SRANS solution, all of the length scales are modeled and the energy break down is 

controlled by the dissipation term, ε.   In this case the physics of the energy cascade is not 

represented in the solution because only a single length scale is modeled.  The resulting 

CFD solution generally requires significantly less compute time.  With LES, the energy 

dissipation typically occurs at the local mesh size through the sub-grid viscosity model 

The local mesh size can be much larger than the Kolmogorov scale which significantly 

reduces the required mesh and temporal refinement.  The separation of the resolved to 

modeled turbulence is finite with the LES approach, as shown in Figure 1-1b.  The 

improvement of the LES approach can still require significant computational resources 

however. 

Hybrid or bridging solutions can provide improvement over a RANS solution while 

avoiding the computational impact of LES.  The simplest hybrid technique is to run a 

RANS model as an unsteady solution.  This is often referred to as URANS.  With this 

method, it is not possible to explicitly define the change from resolved vs. modeled 

turbulent energy.  However, it can resolve the largest turbulent scales and is most 

appropriate where there is a large separation of scales like vortex shedding downstream 

of a bluff body [7].  It should be remembered that a RANS model is calibrated to match 

mean turbulent flows in a steady solution.  Consequently, using them in an unsteady 
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mode is not specifically consistent with the intent of the model.  It will be shown in this 

study however that switching to an unsteady mode can provide significant improvement 

in the accuracy of the solution, including the local Nusselt numbers. 

The recently developed Partially Averaged Navier Stokes (PANS) [9] method uses a 

filtering approach that is similar to LES except that the degree of filtering, i.e. the ratio of 

unresolved to resolved kinetic energy and dissipation, is not be directly dependent on the 

local mesh size.  For this model, the resolved-modeled dividing line is discrete based on 

the defined ratio of resolved to total turbulent energy.  One benefit of the PANS approach 

is that is can be applied to any existing RANS model.  Further, the model for the 

turbulent viscosity from the RANS model can benefit from the strengths of that model 

rather than a typically more simplistic sub-grid model used with LES. 

Another recently developed hybrid modeling approach for turbulence modeling is the 

Scale Adaptive Simulation (SAS) [10, 11] which can be developed for any two equation 

turbulence model.  SAS is typically a transient formulation that incorporates the local 

turbulent length scale found through the second velocity derivative.  This method was 

developed to resolve more turbulence where local flow accelerations/ decelerations are 

detected.  In other areas, the SAS modification is inactive and the model defaults back to 

the base condition.  This can provide improved accuracy by better representing the 

transient turbulent eddies but within a URANS framework.  This approach yields a 

significantly higher degree of resolved turbulence than a similar URANS solution.   
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With Detached Eddy Simulation (DES), which is a hybrid RANS-LES approach, the 

URANS solution is applied near the walls so that very fine meshes can be avoided.  

Further away from the walls, the model transitions to an LES solution.  One aspect of this 

model is that resolving turbulent structures near the wall that may not occur with a DES 

model. 

The present work with will evaluate the spectrum approaches listed for two well 

documented flow problems.  These are a square prism in cross flow and fully developed 

flow in a staggered tube bank.  These configurations were chosen because they feature 

the type of separate flow and large-scale transients than can be found in industrial 

applications.  For both cases, local flow and heat transfer data is available to evaluate the 

accuracy of the models.  The required compute time will also be considered in this study.  

This is not typically addressed in significant detail in the literature.  The industrial user 

cannot benefit from enhanced methods if they require more computer resources than are 

available.  The common assumption when considering this issue is that the incredible 

expansion in compute capability and steadily falling costs make the concerns about more 

computationally expensive models only temporary.  However, for a given problem with 

fixed computational capability, the industrial user will always benefit from faster 

solutions to run more parametric variations and include more geometric detail in the 

model [12]. 
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1.2 Applications 

The two flow configurations that are evaluated in this study feature low Reynolds 

number, incompressible, turbulent flows with significant flow separation.  These flow 

conditions are found in a wide variety of industrial applications.  These include cooling 

flows in electronics as well as heat exchangers.  Shell side flow through in tube banks 

will also experience this flow regime.   

1.2.1 Electric Machinery 

One area where these flow conditions are relevant is in the cooling of electric machinery.  

This would include motors and generators where a variety of machine topologies are used 

to create the shaft power output from electrical power input or the inverse.  One topology 

for an electric generator uses a rotor that carries permanent magnets or energized copper 

windings to create a magnetic field.  When this field sweeps through the armature, 

electric current is produced.  This electric current will also create ohmic losses (I²R) and 

due to its time varying nature, eddy current losses.  As a result, proper cooling designs 

are required to maintain acceptable temperatures in the generator.   

The operable temperature rise in the copper conductors in a generator is limited by the 

allowable temperatures of the ground wall insulation, typically on the order of 120°C to 

200°C [13] depending on the insulation grade and conditions.  The insulated generator 

components are designed to stay below this temperature and temperature model 

predictions are essential to achieving this goal.   
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Electric machines are typically cooled by forced convection through internal passages in 

the machine.  Some larger units like those designed for large nuclear power plants use 

direct water cooling for certain components.  However, convective heat transfer from the 

internal gas flow is a common method of heat removal.  Hydrogen gas, rather than air, is 

frequently used in larger utility scale generators to enhance cooling capability.  Hydrogen 

is used because of its favorable specific heat, thermal conductivity and density relative to 

air.  

A number of authors [14-21] have investigated flow structures and heat transfer 

correlations of the stator end winding geometry found in nearly all synchronous turbo-

generators used to produce electric power for distribution. 

The internal flow passages of an electric machine are designed to effectively maintain 

allowable temperatures while at the same time limiting the parasitic power required to 

remove the heat.  One example of the complex internal geometry is the stator bars for a 

lap wound machine [20].  The flow in this portion of the machine is generally radially 

inward or outward relative to the stator bars and can also have a tangential component. 

The application of simple heat transfer correlations may be impractical and inaccurate to 

use for this geometry.  CFD can used to determine flow distributions and cooling 

performance the various components if machine specific experimental data is not 

available.  However, these flow conditions present the same challenges to the models 

discussed earlier.  The author has personal experience with using CFD models to predict 

convective heat transfer coefficients on this geometry.  The SRANS SST model was 
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found to underpredict the heat transfer coefficient in the stator end winding. While the 

resulting design was successful, smaller stator windings could have been used to save 

cost while still staying below the temperature limits.   

The prevalence of generators for electricity production is significant.  The total global 

electricity generation was 20,225 billion kilowatt-hours in 2010, up from 14,612 billion 

kilowatt hours just 10 years earlier [22].  Nearly all of this production is dependent on the 

electric generator to convert mechanical energy to electric energy.  Energy sources for 

this production include wind, natural gas, coal, hydro-electric, and nuclear.  The use of 

electric motors for transportation and industry are no less ubiquitous.   

Global wind energy has grown more than 10-fold over recent years, from 31.4 billion 

kilowatt hours in 2000 to 341 billion kilowatt hours in 2010.  While this growth has been 

aided by subsidies from governments, the wind industry is expected to be competitive 

relative to other sources without these incentives.  To achieve this end, wind turbines 

have grown in size both in terms of swept blade diameter and electrical output, in order to 

benefit from economies of scale. With generators for wind turbines, proper sizing can 

reduce the cost of the generator and prevent the compounding cost impact of up tower 

weight [23].  (The generator and gearbox drive train can account for 5-15% of the up-

tower weight.)  The application of accurate CFD methods that can be completed during a 

limited product development cycle can help enable the proper sizing of this equipment. 
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1.2.2 Other applications 

Low Reynolds number (10,000-50,000) incompressible turbulent flow also exists in other 

industrial applications including electronics and heat exchangers.  While flow and heat 

transfer in tube banks has been studied for some time [24-30] this topic has received 

more attention to more accurately predict flows in the heat exchanger of a nuclear reactor 

[31-35].  Other applications of an arrangement of cylinders in cross flow similar to tubed 

heat exchangers include pins fin heat sinks [36].  These are smaller in scale than typical 

heat exchangers and do not include internal flow. Pin fins are also frequently used for 

internal cooling of gas turbine blades [37].   

All of these flows feature significant flow separation and flow unsteadiness that would 

challenge an SRANS approach.  Additionally, the flow space of interest for a typical 

industrial problem is sufficiently large that memory and compute time of these problems 

for a CFD solution requires a judicious use of resources.  As a result, an improvement in 

the accuracy of an SRANS solution that is more economical than an LES model is 

needed to aid CFD engineers in industrial settings to develop better products.   
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2 MODEL FORMULATION 

2.1 Governing Equations 

The conditions for the flow fields of interest are for transient, incompressible flow.  The 

governing Navier-Stokes equations [38, 39] in Cartesian coordinates for these conditions 

can be written as 

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 

𝜌𝜌
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕 + 𝜌𝜌𝑢𝑢𝑗𝑗

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇
𝜕𝜕
𝜕𝜕𝑥𝑥j

�
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥j

�  (2) 

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜌𝜌𝑢𝑢𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� (3) 

Equations (1), (2), and (3) are sufficient to model any transient incompressible flow in 

DNS.  However, the required time step and mesh size for an industrial turbulent flow 

problem would be too computationally expensive to be practical.  This is because the 

dissipation of the energy from the momentum equation (2) would occur at very small 

scales relative the geometry and flow structures and these scales would need to be fully 

resolved in the solution.   

The smallest, energy dissipative length scale is referred to as the Kolmogorov length 

scale.  This and the related time scales [40]and are defined in equation (4). 
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𝜂𝜂 ≡ (𝜈𝜈3 𝜀𝜀⁄ )1 4  ⁄ , 𝜏𝜏 = (𝜈𝜈 𝜀𝜀⁄ )1/2    (4) 

Here the smallest turbulent length scales, 𝜂𝜂 are found from the kinematic viscosity, 𝜈𝜈,  of 

the fluid and the dissipation, 𝜀𝜀, which is defined as 𝜀𝜀 = 2𝜈𝜈(𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖). 

The Kolmogorov scale can be estimated for one of the cases in this study.  For the square 

in cross flow case, the square is 0.03 m on a side and the inlet flow velocity is on the 

order of 10 m/s.  The dissipation can be estimated as 𝜀𝜀 = 𝑈𝑈3 𝐿𝐿⁄ .  Using the equations 

listed here yields a Kolmogorov length scale of 1.8 𝑥𝑥 10−5m and the time scale is 21𝜇𝜇𝜇𝜇. 

The smallest cell size for the mesh used for the Large Eddy Simulation (LES) solution in 

this study was  2.5 𝑥𝑥 10−4m.  This is an order of magnitude larger than the Kolmogorov 

scale.  Further this small mesh was only used nearest the walls.  Much larger cells were 

used in the wake area behind the square where the appropriate dissipation would be 

critical.  The time step used for the LES solutions was 7.5𝜇𝜇𝜇𝜇.  A time scale for the 

turbulent eddies of 21𝜇𝜇𝜇𝜇 would require time steps at least an order of magnitude smaller 

to properly resolve the flow.  The net result would be a significantly finer mesh with a 

much finer time step than ultimately used for the LES solution.  Therefore, the 

computational requirements to resolve these turbulent length scales in a DNS solution is 

impractical. 

Modeling the turbulence allows for the appropriate dissipation of the eddies without 

resolving the turbulence.  Reynolds averaging is used to develop a model for the 

turbulence for RANS models.  The conservation equations can be re-written in terms of 
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the sum of the time averaged velocity, 𝑢𝑢�𝑖𝑖, and the random component, 𝑢𝑢𝑖𝑖′, rather than the 

instantaneous velocity, 𝑢𝑢𝑖𝑖. 

𝑢𝑢𝑖𝑖 = 𝑢𝑢�𝑖𝑖 + 𝑢𝑢𝑖𝑖′ (5) 

Substituting this definition of velocity into Equations (1), (2) and (3) yields the same 

continuity equation (6) except it is written with 𝑢𝑢�𝑖𝑖  rather than 𝑢𝑢𝑖𝑖.  The momentum 

equation (7) gains an additional term representing the  Reynolds stress tensor 𝜏𝜏𝑖𝑖𝑖𝑖 =

−𝜌𝜌𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������.  Likewise the replacement of the fluid energy, e, with the time averaged fluid 

energy 𝑒𝑒̅ yields and the additional term in the energy equation (8) representing the 

turbulent heat flux, 𝜌𝜌𝑢𝑢𝚤𝚤′𝑒𝑒′�����.  For low speed flows the fluid energy can be represented by 

product of the specific heat and the static temperature.  These equations are then written 

as  

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (6) 

𝜌𝜌
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝜕𝜕 + 𝜌𝜌𝑢𝑢�𝑗𝑗

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�2𝜇𝜇𝑆𝑆𝑖𝑖𝑖𝑖 − 𝜌𝜌𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������� (7) 

 𝜌𝜌𝐶𝐶𝑃𝑃
𝜕𝜕𝑇𝑇�

𝜕𝜕𝜕𝜕
+ 𝜌𝜌𝐶𝐶𝑃𝑃𝑢𝑢�𝑗𝑗

𝜕𝜕T�

𝜕𝜕𝑥𝑥𝑗𝑗
= 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�𝑘𝑘 𝜕𝜕𝑇𝑇�

𝜕𝜕𝑥𝑥𝑗𝑗
− 𝑢𝑢𝚤𝚤′𝑇𝑇′������ (8) 

These are the Unsteady Reynolds Averaged Navier Stokes (URANS) equations for 

incompressible flow. These equations are used as the basis for all the turbulence models 

used in the present study except for the LES model which is discussed later.   
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The Boussinesq approximation [1] is employed to model the Reynolds stress tensor and 

is calculated from the turbulent viscosity, 𝜈𝜈𝑡𝑡,and the turbulent kinetic energy, k as shown 

in Equation (9).  

𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������ =
2
3
𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜈𝜈𝑡𝑡 �

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� (9) 

The values for k and 𝜈𝜈𝑡𝑡 values are found during the simulation and the method to 

calculate these terms is presented later with each specific model. 

All of the simulations in this study employ the gradient diffusion hypothesis [8] when 

solving the energy equation.  This theorem states that the apparent turbulent heat flux 

(𝑢𝑢′𝚤𝚤𝑇𝑇′������) can be modeled by defining a  turbulent Prandtl number and using the turbulent 

viscosity [41] to define an effective thermal conductivity as shown in Equation (10) and 

(11). 

𝑢𝑢𝚤𝚤′𝑇𝑇′������ =
μt
Prt

�
𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝑗𝑗

�  (10) 

keff = k +
μtCp
Prt

 
(11) 

The energy equation can then be solved using an effective thermal conductivity rather 

than solving transport equations for the turbulent heat fluxes separately.  This eliminates 

the need to solve three more transport equation in addition to the energy equation.  This 
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approach is generally accepted in the literature.  The turbulent Prandtl number used for 

all of the models in this study is 0.85. 

For LES models, an alternate approach is used in developing the transient momentum and 

model closure equations.  With LES, the velocity and fluid energy is filtered rather than 

averaged over a small physical volume in the flow space, typically the local cell of the 

mesh[7].  The turbulent scales larger than this filter size are resolved while the turbulent 

scales smaller than the filter size are modeled with the sub-grid model.  The sub-grid 

model provides closure to the equations and it enables dissipation of the turbulence to 

occur at a much larger scale than the Kolmogorov scale.  The turbulent scales smaller 

than the local mesh have lost their anisotropy and can be appropriately modeled as 

isotropic.  Thus, the larger mesh and time step size enables a more practical solution than 

DNS.  The Dynamic Smagorinsky-Lilly LES model [42] (or simply the Dynamic 

Smagorinsky model) is used in this study and specifics are presented in the next section.  

For both flow cases under consideration for this study, the steady RANS models do not 

adequately model the flow after separation occurs.  Specifically, the near wall eddies and 

the von Karman vortices do not develop in a steady solution and the solution that does 

develop is not an accurate time averaged solution for this flow field.  Additionally, the 

solution shows very poor convergence characteristics in the wake region.  A work around 

for this problem is to only model half of the flow space and to take advantage of the 

geometric symmetry.  While a more robust convergence can be found when symmetry is 

used, the accuracy of the local velocity profiles and heat transfer coefficient on the heated 
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object was found to be poor.  The accuracy of all the SRANS models are be greatly 

improved when run as an URANS model for the two cases considered in this study.  

2.2 Turbulence Models 

The six turbulent simulation techniques used in this study are presented in this section.  

There are multiple variations for these models presented in the literature so specific 

references are provided for each. 

2.2.1 SST 

Of the commonly available models, the SST model [4, 43, 44] has proven particularly 

effective for a wide range of situations.  SST is a RANS that model combines the 

Launder k-ε model and the Wilcox k-ω model through the use of blending functions into 

a single model.  In the boundary layer the k-ω model is used but then transitions to the k-

ε model further away from the wall.  This allows each model to be used for which its 

closure coefficients were calibrated.  The transition is managed with a blending function 

to modify the coefficients in the transport model.  This approach also addresses the 

sensitivity the k-ω model has to free stream values, as these are provided by the k-ε 

model. The k and ω transport equations are written in equations (12) and  (13) [4].  

Turbulent viscosity is found with equation (14).   

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝜌𝜌𝑢𝑢𝑗𝑗𝑘𝑘)
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝑃𝑃𝑘𝑘 − 𝛽𝛽∗𝜌𝜌𝜌𝜌𝜌𝜌 +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜇𝜇 + 𝜎𝜎𝑘𝑘𝜇𝜇𝑡𝑡 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� (12) 
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𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕 +

𝜕𝜕�𝜌𝜌𝑢𝑢𝑗𝑗𝜔𝜔�
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝛼𝛼
 𝜌𝜌𝜌𝜌𝑘𝑘
𝜇𝜇𝑡𝑡

− 𝜌𝜌𝜌𝜌𝜔𝜔2 + 2(1 − 𝐹𝐹1)𝜌𝜌
1
𝜎𝜎𝜔𝜔,2

1
𝜔𝜔
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜇𝜇 + 𝜎𝜎𝜔𝜔𝜇𝜇𝑡𝑡 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� 

(13) 

νt =
𝑎𝑎1𝑘𝑘

min (𝑎𝑎1𝜔𝜔, S𝐹𝐹2) (14) 

 𝑃𝑃𝑘𝑘 = 𝜇𝜇𝑡𝑡 𝑆𝑆2,           𝑆𝑆 =  �2𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖,       𝑆𝑆𝑖𝑖𝑖𝑖 = 1
2
�𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

+ 
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
� (15) 

The F1 blending function is defined as 

F1 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ ��𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚 �
√𝑘𝑘
𝛽𝛽∗𝜔𝜔𝜔𝜔 ,

500𝜈𝜈
𝑦𝑦2𝜔𝜔 � ,

4𝜌𝜌𝜎𝜎𝜔𝜔2𝑘𝑘
𝐶𝐶𝐷𝐷𝑘𝑘𝑘𝑘𝑦𝑦2

��
4

 � (16) 

The cross-diffusion term CDkω is defined as  

CDkω = 𝑚𝑚𝑚𝑚𝑚𝑚 �2𝜌𝜌𝜎𝜎𝜔𝜔2
1
𝜔𝜔
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

, 10−10� (17) 

The F2 blending function is defined as  

F2 = tanh ��𝑚𝑚𝑚𝑚𝑚𝑚 �
√𝑘𝑘
𝛽𝛽∗𝜔𝜔𝜔𝜔 ,

500𝜈𝜈
𝑦𝑦2𝜔𝜔 �

�
2

 � (18) 
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The values for 𝛼𝛼 and 𝛽𝛽 are in Equation (13) are found from the with the F1 blending 

function of the SST model.  Similarly, 𝜎𝜎𝜔𝜔 and 𝜎𝜎𝑘𝑘 are found from using the same blending 

equations and the constants from the k-ε and k-ω equations. 

𝛼𝛼 = 𝐹𝐹1𝛼𝛼1 + (1 − 𝐹𝐹1)𝛼𝛼2 (19) 

𝛽𝛽 = 𝐹𝐹1𝛽𝛽1 + (1 − 𝐹𝐹1)𝛽𝛽2 (20) 

The production of the turbulent kinetic energy term (15) can sometimes over predict the 

turbulence production at a stagnation point.  Modifications to  𝑃𝑃𝑘𝑘 can be made to address 

this issue.  The changes include the Kato Launder [45] modification which uses the strain 

rate magnitude times the vorticity magnitude (𝑆𝑆Ω) rather than the strain rate squared 

(𝑆𝑆2).  The other modification is production limiter as presented with the original model.  

Used together these two modifications to the production term are written as  

 𝑃𝑃𝑘𝑘 = min (𝜇𝜇𝑡𝑡 𝑆𝑆Ω, 10𝛽𝛽∗𝜌𝜌𝜌𝜌𝜌𝜌) (21) 

Both of these modifications are used in this study for  𝑃𝑃𝑘𝑘 in the SST model as well as the 

variants of this model, namely the SST-SAS and PANS-SST.  The values at the wall used 

the standard definitions [43], namely  

𝜔𝜔 =
6𝜐𝜐
𝛽𝛽1𝑦𝑦2

 (22) 

𝑘𝑘 = 0 (23) 
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where y is the distance from the wall to the cell center.  The SST model is typically 

implemented without wall functions and sufficient mesh resolution is required so that the 

first element is inside the viscous sub-layer (y+ ~ 1).  Meeting this requirement allows the 

model to better represent flows where flow separation occurs than a model with wall 

functions.   

2.2.2 Scale Adaptive Simulation 

The Scale Adaptive Simulation (SAS)[10, 11] approach is a typically transient solution 

that provides a modification to the scale determining equation based on local von Karman 

length scale, Lvk [10].  By using this length scale, the model can identify areas of non-

homogenous turbulence.  As such, it is better able to capture turbulence in areas where 

flow separation and streamline curvature occur.  This approach can be applied to any 

two-equation model and is used in this study as a variant of the SST model.  The SAS 

modification is based on work originally presented by Rotta [46] that included an 

additional length scale containing term in the second scale resolving equation based on 

the third velocity derivative.  While this initial derivation was found to be ineffective, it 

was later [10] improved upon to create the SAS model.  In the present model, the von 

Karman length scale is calculated with the second velocity derivative.  This allows the 

SAS modification to be activated in areas of flow separation but revert back to the 

baseline model when this is not the case.   
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The k equation for the SST-SAS model is the same as the SST model as shown in (12) as 

is the calculation of the turbulent viscosity.  Equation (24) shows the ω equation for the 

SST-SAS model.  This equation includes an additional source term, QSAS.   

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝑢𝑢𝑗𝑗𝜔𝜔)
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝛼𝛼
 𝜌𝜌𝜌𝜌𝑘𝑘
𝜇𝜇𝑡𝑡

− 𝜌𝜌𝜌𝜌𝜔𝜔2 + 2(1 − 𝐹𝐹1)𝜌𝜌
1
𝜎𝜎𝜔𝜔,2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ𝜔𝜔
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� 

(24) 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = max �𝜌𝜌𝜂𝜂2𝜅𝜅𝑆𝑆2 �
𝐿𝐿
𝐿𝐿𝜈𝜈𝜈𝜈

�
2

− 𝐶𝐶
2𝜌𝜌𝜌𝜌
𝜎𝜎Φ

max�
1
𝜔𝜔2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

,
1

  𝑘𝑘2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�  , 0� (25) 

The QSAS term contains the ratio of the modeled length scale �𝐿𝐿 = 𝑘𝑘1/2 𝛽𝛽∗𝜔𝜔⁄ � to the von 

Karman turbulent length scale (𝐿𝐿𝑉𝑉𝑉𝑉 = 𝜅𝜅|𝑈𝑈′ 𝑈𝑈"⁄ |).  The term,  𝐿𝐿/𝐿𝐿𝑣𝑣𝑣𝑣, “allows the 

turbulence model to recognize resolved scales in unstable flows and to adjust the eddy-

viscosity” [11].  The QSAS term serves to increase the local specific dissipation production 

in areas of inhomogeneous turbulence.  Consequently, smaller scale eddies are resolved 

than would be found from the baseline SST model.  This can lead to a more accurate 

prediction of the local heat transfer coefficient where flow separation has occurred.  

Because the two test cases in this study do show this type of flow characteristics, the SAS 

model would be expected to work well for these cases.  However, this model was 

calibrated for higher Reynolds number.  The results will show that the model in its 

present form is not well suited to this application 
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2.2.3 Reynolds Stress Model 

The Reynolds Stress Model (RSM) [47], [48], [49] is a second moment closure model 

that models the Reynolds stress’ (𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������) directly  and does not rely on the Boussinesq 

hypothesis to determine a turbulent viscosity.  Instead, the transport equation is solved for 

each Reynolds stress term.  For a three-dimensional problem, the six Reynolds stress 

parameters must be solved, along with the specific dissipation to make seven 

simultaneous equations.  The benefit of this model is that by not using Boussinesq 

hypothesis, which assumes isotropic turbulent stresses, it is better suited for flow with 

severe turbulent anisotropy. 

The derivation of the Reynolds stress transport equation results in of many terms that 

cannot be calculated directly and must be modeled.  These terms require significant ad 

hoc modeling and the use of tunable coefficients [50].  The Reynolds stress transport 

equation for incompressible, non-buoyant flow is written as  

 

 

 

 

 



www.manaraa.com

22 

𝜌𝜌
𝜕𝜕𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������
𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

�𝜌𝜌𝑢𝑢𝑘𝑘𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������� = −𝜌𝜌�𝑢𝑢𝚥𝚥′𝑢𝑢𝑘𝑘′������ 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

+ 𝑢𝑢𝚤𝚤′𝑢𝑢𝑘𝑘′������ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑘𝑘

�+  

  

𝑝𝑝′ �
𝜕𝜕𝑢𝑢𝚤𝚤′

𝜕𝜕𝑥𝑥𝚥𝚥
+
𝜕𝜕𝑢𝑢𝚥𝚥′

𝜕𝜕𝑥𝑥𝚤𝚤
�

�������������������
−

𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

�𝜌𝜌𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′𝑢𝑢𝑘𝑘′��������� + 𝑝𝑝′𝑢𝑢𝚤𝚤′������𝛿𝛿𝑖𝑖𝑖𝑖 + 𝑝𝑝′𝑢𝑢𝚥𝚥′������𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜇𝜇
𝜕𝜕𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������
𝜕𝜕𝑥𝑥𝑘𝑘

�  

  

−2𝜇𝜇
𝜕𝜕𝑢𝑢𝚤𝚤′

𝜕𝜕𝑥𝑥𝑘𝑘
𝜕𝜕𝑢𝑢𝚥𝚥′

𝜕𝜕𝑥𝑥𝑘𝑘

����������
  

 
(26) 

 

While the mean shear term can be calculated directly, the remaining terms, require 

modeling.  Further development of the modeled terms is quite detailed and is not 

presented here.  The specific dissipation term from the k-ω [1, 48] model is used to 

model the turbulent dissipation. 

The additional computational requirements for this model from a standard two equation 

model are significant.  A three-dimensional CFD solution requires the solution of 

transport equations for continuity, momentum for each direction in space and energy.  

For a two-equation turbulence model, this results in a sum of seven simultaneous 

equations.  With the Reynolds stress model, the number is 12.  The added computational 

Transient and convection Mean shear 

Pressure-Strain Diffusion 

Viscous 
Dissipation 
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cost can only be justified if the improvement in accuracy is found for a particular 

problem. 

2.2.4 Partially Averaged Navier-Stokes 

The PANS model [9, 51] is an approach that re-evaluates the initial assumptions of the 

RANS derivation to only model a portion of the turbulence and allow the transient flow 

solution to resolve the rest.  This model directly controls the ratio of the modeled 

(unresolved) to total turbulent kinetic energy.  A PANS model is similar to an LES 

approach in that turbulent scales larger than the filter size are resolved while those 

smaller than the filter size modeled (or unresolved.)   

The ratio of unresolved (modeled) to total turbulent kinetic energy fk is written as  

𝑓𝑓𝑘𝑘 =
𝑘𝑘𝑢𝑢
𝑘𝑘𝑡𝑡

=
𝑘𝑘𝑢𝑢

𝑘𝑘𝑟𝑟 + 𝑘𝑘𝑢𝑢
 (27) 

Similarly, the unresolved-to-total specific dissipation ratio is written as fω = ωu/ωt. The 

unresolved turbulence is then modeled with the ku and ωu equations and the resolved 

turbulence is present in the transient flow solution.   

The transport equation for k is the same as the standard SST model (Equation (12))  but 

the specific dissipation equation [52] is re-written as  
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𝜕𝜕(𝜌𝜌𝜔𝜔𝑢𝑢)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝑢𝑢𝑗𝑗𝜔𝜔𝑢𝑢)

𝜕𝜕𝑥𝑥𝑗𝑗

= 𝛼𝛼
 𝜌𝜌𝜌𝜌𝑘𝑘
𝜇𝜇𝑡𝑡

− �
1
𝑓𝑓𝜔𝜔
− 1�

𝛼𝛼𝜌𝜌𝜌𝜌∗𝜔𝜔𝑢𝑢
𝜇𝜇𝑡𝑡

−
𝜌𝜌𝜌𝜌𝜔𝜔𝑢𝑢2

𝑓𝑓𝜔𝜔

+ 2(1 − 𝐹𝐹1)𝜌𝜌 �
𝑓𝑓𝜔𝜔
𝑓𝑓𝑘𝑘
�

1
𝜎𝜎𝜔𝜔,2

1
𝜔𝜔𝑢𝑢

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜔𝜔𝑢𝑢
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ𝜔𝜔
𝜕𝜕𝜔𝜔𝑢𝑢
𝜕𝜕𝑥𝑥𝑗𝑗

� 

(28) 

The diffusion coefficients for the PANS solution are written as  

Γ𝑘𝑘 = μ +
μt
𝜎𝜎𝑘𝑘
𝑓𝑓𝜔𝜔
𝑓𝑓𝑘𝑘

            Γ𝜔𝜔 = μ +
μt
𝜎𝜎𝜔𝜔

𝑓𝑓𝜔𝜔
𝑓𝑓𝑘𝑘

  (29) 

Inspection of Equation (28) shows that when fk = 1 and fω =1, the equation collapses 

down to the standard ω transport equation (13).  Conversely, when fk and fω tend towards 

0, the specific dissipation gets infinitely large.  Accordingly, k would go to 0 as would 

the turbulent viscosity.  The result would be a DNS solution as the turbulent model 

parameters have been suppressed.   

When values for 𝑓𝑓𝑘𝑘 are between 0 and 1, the specific dissipation is increased which leads 

to a reduction of the unresolved turbulent kinetic energy, as well as the turbulent 

viscosity.  The transient solution then yields smaller turbulent length scales and more 

turbulent energy is captured in the flow transients and thus can more accurately capture 

the local flow physics.  The local grid size is included in the calculation of fk to determine 

if the local turbulent scales can be resolved.  In this solution, all of the specific dissipation 

is unresolved, hence fω = 1   
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A constant value of fk for the entire flow space have been used [9, 53] but this does not 

take full advantage of this approach when the turbulent scales and cell size vary in the 

solution space.  Methods have been developed that are based on the ratio of the local cell 

size ∆= (∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧)1/3and the turbulent length scale  

𝐿𝐿 = 𝑘𝑘1/2 𝛽𝛽∗𝜔𝜔⁄    (30) 

Two methods to define fk can be found in the literature [54].  The first is a derivation by 

adapting the Kolmogorov argument to define the minimum scale a grid can resolve as 

presented by Girimaji [51].  This expression is written as 

𝑓𝑓𝑘𝑘 = 3(∆/(𝐿𝐿))2/3 (31) 

This approach has been used in a number of papers [52, 55].  A more robust derivation 

used in the present study is based on the turbulent energy cascade as presented by 

Foroutan and Yavuzkurt [56].  These authors developed the relation provided in Equation 

(32).   

𝑓𝑓𝑘𝑘 = 1 −

⎣
⎢
⎢
⎢
⎡ �L

Δ�
2
3

0.23 + �L
Δ�

2
3
⎦
⎥
⎥
⎥
⎤
4.5

 (32) 

This expression yields noticeably lower values for fk, as shown in Figure 2-1, than 

Equation (31).  As a result, higher levels of resolved turbulence are found in the solution.  
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Additionally, this equation does not need to be clipped at 1 as required for equation (31) 

and provides a continuous response to the cell size to turbulent length scale ratio.  

 
Figure 2-1  Function to determine fk in PANS solution 

The fk field is determined through an iterative approach because the solution to the k and 

ω field in the flow space is coupled to fk equation.  From an initial condition, periodic 

updates to the fk field is made and an updated time averaged flow field can be found.  

Successive iterations are needed until the fk field is stable and the final transient run can 

be completed.  As such, a PANS approach requires more computational time and more 

intervention from the user to create the solution. 

To start, the unresolved turbulent kinetic energy is found from a steady RANS solution.  

This is an approximation of the actual field and its accuracy is limited by the RANS 

model itself.  With the solution of the initial k field, equation (32)  can be used to 
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calculate fk in the flow space and this is used as an initial condition and the first part of 

the transient flow solution.  With the fk values fixed, the solution is run for a sufficient 

number of time steps to achieve a stable, time averaged solution.  This solution can then 

be used to calculate the time averaged turbulent kinetic energy of the solution by the 

standard definition shown in equation (33) 

𝑘𝑘𝑟𝑟 =
1
2
𝑢𝑢𝚤𝚤′𝑢𝑢𝚤𝚤′������ (33) 

This value can then be used to determine the total turbulent kinetic energy from the sum 

of the unresolved and resolved components, namely 

𝑘𝑘𝑡𝑡 = 𝑘𝑘𝑟𝑟 + 𝑘𝑘𝑢𝑢 (34) 

This updated turbulent kinetic energy is used in Equation (30) and Equation (32) to 

update the fk field.  With this calculation, the PANS method is determining the 

appropriate degree of resolved and unresolved turbulence based on the local mesh size 

and flow conditions.  The solution is run again to update both resolved and unresolved 

turbulent values and this process is repeated until the fk field has converged. 

2.2.5 Detached Eddy Simulation  

DES is hybrid approach that employs an unsteady RANS solution near the wall but 

transitions to an LES solution away from the wall.  As such, a DES model requires a 

blending function to facilitate the transition between to two regions[57].  The same 

RANS model that is used for the near wall turbulence can also be used as a sub-grid 
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viscosity model.   There are a number of DES approaches available in the literature and 

the Delayed DES (DDES) model [58] was used in the present study.  DDES uses the SST 

model as the RANS and sub-grid viscosity model.  It is calibrated with a number of test 

cases including a backward facing step where the Reynolds number of 28,000.  This flow 

condition is similar to the two cases evaluated in the present study.  

The turbulent kinetic energy equation for the DDES model is shown in Equation (35) 

while the specific dissipation equation for this model uses the standard found in the SST 

model (Equation (14).) 

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝜌𝜌𝑢𝑢𝑗𝑗𝑘𝑘)
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝑃𝑃𝑘𝑘 − 𝜌𝜌𝑘𝑘
3
2/𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜇𝜇 + 𝜎𝜎𝑘𝑘𝜇𝜇𝑡𝑡 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� (35) 

This equation is slightly different from the standard SST turbulent kinetic energy 

equation.  It separates out the standard RANS length scale for this model, 𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√𝑘𝑘 𝐶𝐶𝜇𝜇𝜔𝜔� , and replaces it with an expression for the local turbulence length scale modeled 

in the DDES model, 𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.  The  𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 term is then calculated with conditional terms that 

evaluate whether to use the standard RANS model or an LES model based on local mesh 

size and flow conditions.  This expression is show in Equation (36). 

𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑓𝑓𝑑𝑑max (0, 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) (36) 

The length scale for the LES scales is shown in Equation (37) and the coefficient, 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷, is 

determined by the standard blending function used in the SST model (Equation (38)) and 

the hmax is the maximum length of cell. 
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𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑚𝑚𝑚𝑚𝑚𝑚 (37) 

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷1𝐹𝐹1 + 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷2(1− 𝐹𝐹1) (38) 

The empirical blending function, fd is defined in Equations (39) and (40) and the tuning 

of the coefficients Cd1 and Cd2 can be found in [58]  

𝑓𝑓𝑑𝑑 = 1 − tanh [(𝐶𝐶𝑑𝑑1𝑟𝑟𝑑𝑑)𝐶𝐶𝑑𝑑2  (39) 

𝑟𝑟𝑑𝑑 =
𝜈𝜈𝑡𝑡 + 𝜈𝜈

𝜅𝜅2𝑑𝑑𝑤𝑤2 �0.5 ∗ (𝑆𝑆2 + Ω2)
 (40) 

The DDES model is expected to facilitate a more accurate solution at locations away 

from the wall than the other hybrid solutions but may not be able to resolve the turbulent 

flow structures nearest the wall as well as LES would.   

An alternate Detached Eddy Simulation, namely IDDES (Improved DDES) [58] was also 

attempted for the two cases in this study.  However, the results for the local Nusselt 

number were inferior than those from the DDES model.  This may be because IDDES 

uses a wall modeling approach which does not typically work well with heat transfer 

solutions. 

2.2.6 Large Eddy Simulation 

The derivation of the LES model is based on filtering rather than averaging the velocity 

or other parameter of interest [59].  The general filtering expression can be written as 
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𝜙𝜙� = � 𝐺𝐺(𝑥𝑥 − 𝜉𝜉)𝜙𝜙(𝜉𝜉)𝑑𝑑𝑑𝑑
+∞

−∞

 (41) 

Here the variable 𝜙𝜙 is operated on with the filtering function G().  The instantaneous 

value of 𝜙𝜙 as the sum of the filtered 𝜙𝜙� and sub-grid value 𝜙𝜙′ are shown in equation (42) 

𝜙𝜙 = 𝜙𝜙� + 𝜙𝜙′ (42) 

The filtered term is resolved in the solution while the sub-grid term is modeled.  A 

variety of filter types can be used [7].  These include a box, spectral cutoff and Gaussian. 

Rewriting equation (42) for the velocity (𝑢𝑢𝑖𝑖 = 𝑢𝑢�𝑖𝑖 + 𝑢𝑢′) and substituting it back in to the 

momentum equation results in filtered momentum equation, namely 

𝜌𝜌
𝑢𝑢�𝑖𝑖
𝜕𝜕𝜕𝜕 + 𝜌𝜌𝑢𝑢�𝑗𝑗

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 (43) 

The sub-grid stress tensor 𝜏𝜏𝑖𝑖𝑖𝑖 is defined as [42] 

𝜏𝜏𝑖𝑖𝑖𝑖 = �𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖 − 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥� � (44) 

This is of course similar to the Reynolds Stress tensor used for a RANS derivation.  To 

close this model, the sub-grid stress tensor is defined as  

𝜏𝜏𝑖𝑖𝑖𝑖 −
1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝜏𝜏𝑘𝑘𝑘𝑘 = 2𝐶𝐶Δ2�𝑆̂𝑆�𝑆̂𝑆𝑖𝑖𝑖𝑖 (45) 
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where 𝑆̂𝑆 = 1
2

(𝜕𝜕𝑢𝑢�𝑖𝑖 𝜕𝜕𝑥𝑥𝑗𝑗 + 𝜕𝜕𝑢𝑢�𝑗𝑗 𝜕𝜕𝑥𝑥𝑖𝑖)⁄⁄  and �𝑆̂𝑆� = �2𝑆̂𝑆𝑘𝑘𝑘𝑘𝑆̂𝑆𝑘𝑘𝑘𝑘�
1/2

 

The filter scale, Δ, is typically the local grid size. The only remaining item required to 

close the momentum equation is to define C, the Smagorinsky coefficient.  It has been 

found that a single definition of C for the entire flow space does not yield satisfactory 

results [59].  The Dynamic Smagorinsky model solves this problem by dynamically 

calculating the local values for Smagorinsky coefficient in the flow field for every time 

step.  This is achieved by creating a second filter that is typically twice the size of the 

original filter.  These two definitions for the same sub-grid stress tensor yields multiple 

equations and one unknown.  The method of least squares is then used to find the best fit 

solution for C.  This procedure is required for each cell in the flow space and at every 

time step.  Further, the Smagorinsky constant is clipped to keep it within reasonable 

values [48] , namely 0 < C < 0.23. 

In addition to the Dynamic Smagorinsky model, the Wall-Adapting Local Eddy-

Viscosity (WALE) [60] model was also used for the two cases presented in this study.  

This model is intended to provide better behavior for wall bounded flows and also 

properly represent laminar flows when present [48].  However, it was found that the local 

Nusselt number values for the Dynamic Smagorinsky model more accurate than the 

WALE model for the cases presented here. 
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3 TEST CASES 

Two test cases were chosen for this study represent the types of flows that can appear in 

industrial applications.  The first is flow through a staggered tube bank.  The specific case 

studied here is a small section of the tube bank where the flow is fully developed and 

periodic boundary conditions can be applied.  The turbulence is relatively uniform across 

the flow space and is dominated by the effects of the boundary layers as well as the 

separation/ recirculation zone behind the tubes.  The second case is a square prism in 

cross flow in a wind tunnel.  At the inlet of the tunnel, the flow has a uniform profile with 

low turbulence intensity.  The flow then impinges on the front surface of the square and 

then separates around the sides and rear, generating a von Karman vortex sheet with a 

significant periodic flow component.  The turbulence is present very near the square and 

then dissipates downstream.  Both cases have been thoroughly researched by a number of 

authors and the pedigree of the experimental data is well regarded.  

3.1 Staggered tube bank 

Flow around tube tanks has been studied extensively for some time [24-26, 28, 29, 32, 

61-64].  These studies generally focused on determining the mean heat transfer 

coefficient on the external surface of the tube as well as the pressure drop.  This 

information could be used to determine the shell side heat transfer coefficient and flow 

resistance when performing heat exchanger calculations.  This work also focused on 
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generating correlations from wide variety of tube spacings so that the heat transfer 

performance of a tube arrangement not specifically tested could be predicted. [61]  

For developing and improving CFD models, more detailed experimental data is required 

than bulk heat transfer and pressure drop values.  A few studies have provided detailed 

flow profiles and local Nusselt numbers that vary at different angular locations around a 

tube [62, 65-68].  Of particular interest is the experiments performed by Meyer [68].  In 

this work, local Nusselt numbers were found for a staggered tube bank with the same 

spacing and Reynolds number as another study by Simonin and Barcouda[69] that 

measured the local velocity and Reynolds stress profiles in the flow.  Together, these two 

data sets provide an excellent platform to evaluate the performance of CFD methods. 

The flow study used Laser Doppler Velocimetry (LDV) to find instantaneous two 

component velocity values at a number of locations in one-unit cell of a fully developed 

region of the tube bank. The transient data was used to determine mean velocity values as 

well as the Reynolds stresses.  A sketch of the tube bank layout from this experiment is 

shown in Figure 3-1. 
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Figure 3-1  Experimental configuration for fully developed flow in a staggered tube bank 

The tube diameters are 21.7 mm with a spacing of 45 mm and the normalized tube 

spacing (S/D) is 2.074 x 1.037.  Time averaged velocity and Reynolds stress data is 

available at a number of locations in the periodic flow space as shown in Figure 3-2. 

 
Figure 3-2  Locations for velocity and Reynolds stress profiles for fully developed flow 

in a staggered tube bank 
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The normalized locations for the measurements used by Simonin and Barcouda [69] is 

2x/L or 2y/L.  The center of the center tube is 0 and the limit of the model space as 

shown in Figure 3-2 is 1 or -1.  This convention will be used in the present study. 

With LDV measurements, two laser beams are directed at a single point at an acute angle 

and the resulting interference pattern allows the detection of the local velocity.  Because 

the beams are at an angle, the location where the beams cross cannot be placed very close 

to the wall.  For this reason, the velocity and Reynolds stress data are not available near 

the wall.  This data is available at the ERCOFTAC Classic database [70]. 

The Meyer [68] experiments were performed in air to find the local heat transfer 

coefficients.  A staggered tube bank array is created with steel tube tubes with a diameter 

of 45 mm with the same spacing ratios that were used for the flow experiments [69].  In 

the 5th of 7 rows, one acrylic tube is wrapped with a gold coated mylar sheet.  When 

current is applied to the sheet, a uniform heat flux is created.  At one point on the sheet 

thermocouples are attached to the back side of the film to provide the local temperature.  

With knowledge of the inlet air temperature, the heat flux and the local surface 

temperature, the local Nusselt number can be found. 

The heated tube can be rotated a with better than 1° angular accuracy.  This allows the 

Nusselt number to be found at all locations around the tube with a single thermocouple.  

The data was corrected to account for radiation and conduction heat transfer along with 

the temperature dependency of the gold layer electrical resistance so that the adjusted 
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heat flux can be used to provide accurate data.  The accuracy of the data is reported to be 

+/- 3% of the Nusselt number at the front and sides of the tube and +/- 5% on the rear.   

The stated Reynolds number for the flow experiments is 18,000.  This calculation is 

based on the tube diameter and the flow velocity prior to entering the tube bank.  It is 

more typical however for the Reynolds number for a tube bank to be defined from on the 

max velocity (i.e. min flow area) [25].  The higher velocity found in this area, rather than 

the open flow prior to entering the tube bank results in a Reynolds number of 40,000 

rather than 18,000.  While the Meyer data is reported to be taken at a Reynolds number of 

40,000, it is the same flow condition as Simonin and Barcouda data.  The results in this 

study are reported as having the higher although equivalent Reynolds number of 40,000. 

The local Nusselt numbers are reported as an angular position relative to the stagnation 

point on the center tube as shown in Figure 3-3. The value of 0° correspond to the front 

stagnation point and the angle of 180° corresponds to the opposite side.   

 
Figure 3-3  The angle θ from the stagnation point on the tube  

The local Nusselt number data from this experiment, along with the error bars is shown in  

Figure 3-4. 
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Figure 3-4  Local Nusselt number data for staggered tube bank from Meyer [68] 

The mean Nusselt number from this data is 222.4 and while a tube bank correlation [25] 

provides a value of 203.9 [68] resulting in an error 9.1%.  Since the stated accuracy of 

this correlation is +/- 15%, it confirms the accuracy of the experimental results. 

 Meyer lists the mean Nusselt number for the experimental data as 192.8 but this value is 

incorrect based on the average of the data shown in Figure 3-4.  Since this data was 

extracted from a figure where the Nusselt number is normalized by the Reynolds number 

to the 0.6 power it is appropriate ensure the data extraction was conducted accurately.  

Meyer [68] also presents experimental local and mean heat transfer data for an additional 

normalized tube spacing of  2.0 x 2.0 at a Reynolds number of 41,500.  This is nearly 

identical to the 40,000 value for the 2.074 x 1.037 data used in this study.  The mean 
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experimental Nusselt number for the 2.0 x 2.0 case is reported as 190.7.  However, the 

local Nusselt number for both cases as shown in Figure 3-5 clearly shows higher overall 

values for the 2.074 x 1.037 case.  Therefore the 222.4 mean Nusselt value for the data 

shown in Figure 3-4 is correct and will be used to compare against the CFD cases rather 

than the 192.8 value reported by Meyer. 

 
Figure 3-5 Local Nusselt found by experiment two tube bank configurations Meyer [68] 

It is also interesting to compare the local Nusselt values for the two spacings provided in 

Figure 3-5.  The tighter tube spacing of the 2.074 x 1.037 shows higher heat transfer as 

already discussed for a similar Reynolds number.  The general shapes of the curves are 

the same, with two distinct ‘bumps’ where the local heat transfer is increased.  In both 

cases, the second bump that peaks at 180° results from the separated flow impinging on 
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the rear surface.  The first bump is due to a small eddy that develops between this point 

and the point where the flow first separates.  The case with the wider tube spacing shows 

earlier flow separation because the flow is less constrained. 

The flow and heat transfer data have been used to evaluate CFD models by a number of 

researchers.  Recently a number of authors [35, 71, 72] studied flows through tubes banks 

as part of larger DOE study on Very High Temperature (Gas) Cooler Reactor (VHTR) for 

use in a nuclear reactor.  This work focused on the ability of a spectrum of scale 

modeling and scale resolving methods to accurately predict flows in tube banks.  The 

steady RANS models [72](k-ε, RNG k-ε, SST, and RSM) were all found to provide 

“marginal to poor” results.  In the second part of this study [73] simply using these same 

models in a unsteady mode resulted in a significant improvement in the accuracy of for 

the velocity and Reynolds stress predictions.[74] 

The staggered tube bank flow data was used to compare an LES approach using a 

Smagorinsky model to a PANS modification of a three equation variant of the k-ε model 

[55].  This study used a mesh for the PANS solution that is that is more than an order of 

magnitude finer than that used for the present study.  The LES mesh was four times finer.  

The results showed that the PANS approach yielded similar results than the LES model 

although the LES mesh was twice the cell count. 

In another study [75] a fine and course LES simulation along with an unsteady RSM 

model was employed to match the flow data.  This study was run at a lower Reynolds 

number (9,000) to limit the mesh refinement required to resolve a sufficient portion of the 
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turbulence.  The results of both models were comparable except in the near wall region.  

This study also references two other DNS [74, 76] studies to compare the results of their 

study.  The LES results were found to match well relative to the DNS study.  The RSM 

model results were also satisfactory. 

While the experimental flow data alone has received a lot of attention as a platform to 

evaluate CFD methods, the heat transfer experiments have been leveraged less in the 

literature.  The Meyer experimental data for the 2.0 x 2.0 normalized spacing was used to 

benchmark a numerical study to optimize the tube bundle spacing [77]. This work used a 

number of SRANS models to evaluate experimental data sets including the Meyer data.  

This study found that the RNG k-e model provided a very good match until flow 

separation occurred at about 90° past the stagnation point.  This result was used to 

understand the optimal spacing of the tubes based on the calibration from the Meyer data.  

Another study by the same author [78] extended these results to three dimension by 

varying the width of the flow area between plates perpendicular to the tubes.  

Finally, a few studies have looked at closely related topics.  These include unsteady heat 

transfer and velocity data in a tube bundle along with an evaluation of the coherence 

between the two [62].  Another is an experimental and computational study of flow in a 

staggered tube bank with a Reynolds number of 9,300 [32].  The SRANS methods were 

found to not predict the flow and turbulence quantities well.  

In summary it has been shown that URANS and scale resolving models will show 

improved accuracy for the staggered tube bank.  The benefits of the more 
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computationally expensive methods relative to the accuracy will be determined in the 

present study.  In addition, evaluation of URANS and scale resolving methods with the 

Meyer data has not yet been published.  Evaluating the accuracy of the CFD methods for 

this case, in addition to the flow data provides a contribution to the existing knowledge in 

this area. 

3.2 Square in cross flow 

As with the staggered tube bank, experimental flow and heat transfer data is available in 

the published literature for a square prism (or cylinder) in cross flow for nearly identical 

conditions.  For these cases, the prism is tested in a wind tunnel with a low inlet 

turbulence intensity, flowing left to right as shown in Figure 3-6.  The square causes 

significant flow separation and a von Karman vortex sheet is created in the rear of the 

object.  

 

Figure 3-6  General wind tunnel configuration for thermal and flow measurement 

One of the most common shapes to study in this context is a one with a circular cross 

section.  Experimental data is available for both the local flow field and the location of 
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flow detachment.  Local heat transfer coefficients have also been found experimentally 

[79].  

The square prism has also been evaluated, but to a lesser extent.  The square differs from 

the circular prism because the flow will separate at the front corners of the square while 

the separation location on the cylinder will be dependent on the inlet turbulence and the 

Reynolds number, among other factors. 

The flow for the square data is provided by Lyn et al. [80].  This study used a two 

component LDV system to measure u- and v-velocity data at a large number of cross 

sections as shown in Figure 3-7.  This figure also provides a cross reference to locations 

on that square surface for the local Nusselt number data for the heat transfer data. 
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Figure 3-7  Square in cross flow, selected locations for data collection [80] with cross 
referenced locations for the heat transfer data from Igarashi [81] 

This study was performed in water with a Reynolds number of 21,400.  The square prism 

was D=40 mm on a side and the flow channel was 560 mm wide, perpendicular to the 

flow direction.  This makes the normalized flow channel width 14D the blockage area of 

the prism is 7.1%.  The channel is 9.75D deep and the inlet turbulence intensity is 2%.  

The reported Strouhal number (𝑆𝑆𝑆𝑆 ≡ 𝑓𝑓𝑓𝑓/𝑈𝑈) for this case is 0.132 +/- 0.004.   

The time averaged velocity and Reynolds stress data is available at the ERCOFTAC 

Classic database [70].  The flow data is a standard benchmark for URANS and LES 

analysis [45, 52, 53, 82-84].  This includes the development of the Kato-Launder 

modification of the turbulent kinetic energy production term [45] as well as the PANS 

model [53] 
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he local heat transfer coefficient data was created by Igarashi for a range of Reynolds 

numbers (5,600 to 56,000) [81, 85] and for a number of angles of incidence (0° to 45°) 

for the square in the wind tunnel.  The test data used in the present study is for a 

Reynolds number of 18,500 based on the free stream velocity and the side length, D, of 

the square.  In the Igarashi experiment, the square is 30mm (D) on a side while the wind 

tunnel was 400 mm (13.3D) wide in direction transverse to the flow.  The wind tunnel is 

800 mm long in the flow direction and the square prism is 150 mm (5D) tall.  This 

configuration results in a blockage factor of 7.5%.  The inlet turbulent intensity is 0.5% 

A 0.02 mm stainless-steel sheet is folded around a square acrylic bar and alternating 

current is applied through the metal to generate a uniform heat flux.  Copper-Constantan 

thermocouples are mounted on the surface of the metal determine the local temperature.  

The heat transfer coefficient is based on the heated surface temperatures and the inlet air 

temperature.  The measurement accuracy is not provided in these papers but the same 

author conducted a very similar experiment and a later paper [86] and report a 

measurement accuracy of +/- 5%.   

The experimental correlation developed for the mean Nusselt number data from this 

experiment is 

𝑁𝑁𝑁𝑁 = C𝑅𝑅𝑒𝑒𝑛𝑛 (46) 

The mean and side specific values for the coefficients C and n in this equation are 

provided in Table 3-1 
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Table 3-1  Coefficients for Nusselt number experimental correlation for square in cross 
flow [81, 85]  

 C n Nu for 
Re=18,500 

Total 0.14 2/3 97.9 
Front 0.64 1/2 87.0 
Sides 0.131 2/3 91.6 
Back 0.173 2/3 121.0 

The exponent provided from this paper [81] is listed at 0.66 rather than 2/3.  However, 

using 0.66 results in an overall mean Nusselt number of 91.7 which is below the 

arithmetic average of the values found for each side of the square from their respective 

correlations.  Consequently, 2/3 was probably the intend value rather than the truncated 

0.66. 

The flow and heat transfer data together provide an excellent data set to evaluate the 

effectiveness of CFD methods to predict local flow fields and heat transfer coefficients.  

The Reynolds number for the flow data is 21,400 while the Reynolds number for the heat 

transfer data is nearly the same at 18,500.  Likewise, the water tunnel for the flow data is 

slightly wider with a percent blockage of 7.1% instead of 7.5% for the heat transfer 

experiments.  These conditions are close enough that the heat transfer and flow data can 

be evaluated together.  The CFD model for this study is based on the heat transfer tests. 

This combined data set has been used in a number of recent studies.  This includes the 

development of the  PANS-SST model [52] used in the present study.  In this paper a 

wall resolved and wall function approaches were used.  Not surprisingly, the wall 

resolved case showed a better match to the local Nusselt number around the square.  The 
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velocity and Reynolds stress data also showed very good results.  Another study used the 

Lyn dataset only to evaluate improvements of a PANS- k-ω model [82].  These authors 

evaluated an alternate method to determine the ratio of resolved to total turbulence 

kinetic energy than the one used in this study.  The results showed that the flow profiles 

as well as drag coefficients and Strouhal numbers could be predicted accurately with a 

coarser mesh than one required for an LES solution.  A similar result was found in 

another study using a PANS-k-ε model [53].  

In summary, both of the test cases have been used to assess and improve a variety of CFD 

models.  They also present an opportunity to asses two different flow configurations at an 

approximately the same Reynolds number.  Consequently, the conclusions drawn from 

the results from both cases will carry more weight than either one of them alone.   
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4 METHODS OF ANALYSIS 

4.1 Mesh Creation 

The geometry for each flow case was created in ANSYS Workbench.  The geometry for 

each case is created in two dimensions and then extruded in the z direction.  The 

thickness of the extrusion for each case is the same depth as the characteristic length 

(tube diameter or square side) as the object in cross flow.  For the staggered tube this 

depth is 45mm and for the square it is 30mm.  ANSYS Mesh was used to create a paved 

quadrilateral grid that was extruded in the z-direction to create an all hexahedral mesh.  

Meshing tools were used to refine the mesh near the wall to ensure that the first cell had a 

y+ ~ 1, well inside the viscous sublayer.  The meshes used for the SST, RSM, PANS-SST 

and SST-SAS solutions as well as their boundary definitions are shown in Figure 4-1 and 

Figure 4-2.  The meshes used for the DES and LES solutions were similar but used finer 

grids.  For the mesh sensitivity study, all the meshes evaluated follow the same general 

pattern shown here.  For the square model, the region downstream of the square was 

refined to properly capture the vortex shedding in wake region. 
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Figure 4-1  Mesh C for staggered tube bank 

 

Figure 4-2  Mesh C for square in cross flow 

4.2 Problem Configuration 

4.2.1 CFD model conditions 

The fluid is defined as air with temperature dependent fluid properties (density, viscosity, 

specific heat and thermal conductivity.) A constant heat flux of 1,000 W/m² K is applied 

to the surface to emulate the heat generation at the surface.  For both cases, a periodic 
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boundary condition is applied to the surfaces perpendicular to the z-axis.  For the 

staggered tube bank, a fixed mass flow rate of 0.031099 kg/s in the flow x-direction 

results in the appropriate Reynolds numbers.  Similarly, the inlet velocity of 9.7082 m/s 

for the square in cross flow creates a Reynolds number to match the Igarashi heat transfer 

data.  The inlet temperature for both cases is 300K. 

4.2.2 Solution Methods 

The solution for this study was performed with ANSYS Fluent v17.1, which is an 

unstructured finite volume code [48].  The models for RSM, DES and LES used the 

standard model in the Fluent software.  The SST, SST-SAS and SST-PANS models were 

programed into the software through User Defined Functions (UDF) [87].  The turbulent 

kinetic energy (k) and the specific dissipation (ω) terms are represented in the software as 

scalars.  This turbulence model is then linked to the remainder of the solution through the 

turbulent viscosity calculation in a UDF.  The source terms and diffusion coefficients for 

the k and ω equations are provided to the solver via UDFs.  The remainder of the solution 

of the scalar transport equation including discretization is handled by the software.  The 

implementation of the turbulence model in ANSYS Fluent is presented in Appendix A, 

including a listing of the source code.  The solver numerics used in the solution are 

presented in Table 4-1. 
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Table 4-1  Solver settings for solution 
Scheme/ Spatial 
discretization 

Model  Value 

Pressure Velocity Coupling All SIMPLE 
Pressure Gradient All Second order 
Momentum SST, RSM, PANS-SST Second order upwind 
 SST-SAS, LES and DES Bounded Central Differencing 
Reynolds Stresses RSM Second order upwind 
Turbulent Kinetic Energy SST, SST-SAS, SST-

PANS, DES 
Second order upwind 

Specific Dissipation SST, SST-SAS, SST-
PANS, RSM, DES 

Second order upwind 

Energy All Second order upwind 
Transient All Bounded Second Order Implicit 

4.2.3 Transient results 

After providing an initial condition based on the inlet fluid velocity, the steady solver is 

run until the solution residuals stop decreasing monotonically.  Because the steady 

solution is not able to resolve the instability caused by the flow separation for both cases, 

neither will demonstrate good convergence in this mode.  The solution was then switched 

to transient and restarted with the steady solution used at its initial condition.  The time 

step is manually adjusted for each solution to ensure that Courant-Friedrichs-Lewy (CFL) 

number was less than 5 in all locations for the URANS solutions and less than 1 for the 

DES and LES solution.   

When starting from a transient solution from a steady state initial condition, there is a 

start-up time required to reach a physically realistic, unsteady solution.  Results from the 

start up period were not included in the final time averaged results.   
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4.2.4 Time averaging solution 

One of the challenges of this study was to determine the both start up time and the 

number of time steps required to reach a time invariant solution.  Thousands of time steps 

are run and the data files from these results are post-processed separately.  ANSYS 

Fluent can determine the time averaged value for any parameter from a transient analysis.  

However, this capability does not directly allow the user to confirm that a true time 

invariant solution has been reached.  It was found to be more reliable to write data files at 

each time step that could be analyzed by a separate program specifically written for this 

purpose. 

For the calculation of the Nusselt number, the surface temperature for the entire heated 

surface is written at each time step (or every other time step for the larger meshes and 

smaller time step solutions.)  Likewise, the velocity and other data required to find the 

Reynolds stress profiles is written to another set of files.  The data is then used to 

calculate the Nusselt number, Reynolds stress, etc., and are averaged over time.  In 

addition, the data is averaged in the z-direction because the time averaged flow is two 

dimensional and it therefore statistically homogeneous in this direction.  The Nusselt 

number profiles are sub-divided into ten sub-groups and the mean value for each sub-

group is reported.  These sub-averages are used to determine if time invariance has been 

achieved. 

A sample data set for the mean Nusselt number for the square in cross flow is provided in 

Figure 4-3 for a case that is not time invariant.  Figure 4-3a shows the local Nusselt 
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number for each sub-average, the final average and the experimental data.  The x-axis is 

the non-dimensional distance from the stagnation point or the center of the front of the 

square.  (Figure 3-7 provides details on the non-dimensional distance relative to the 

corners on the square.)  In Figure 4-3b, the mean Nusselt number by side is plotted 

relative to the characteristic time, which is defined as the time required for the mean flow 

to travel the length of the square side.  The local Nusselt number is averaged by surface 

on the square for each of the 10 sub-averages (dashed line) as well as a cumulative 

average (solid line).  This cumulative average can be used to determine if the model has 

been run long enough by looking at the slope of last few sub-averages. 

 

  
Figure 4-3  Sample time averaging result for square in cross flow with local Nusselt 

number (a) and averaged by surface (b); incomplete case   

The data from this case shows that the model has not been run for a sufficient number of 

steps to achieve a time invariant solution.  These plots also show some interesting 

features of the solution.  The first is that the local Nusselt number in Figure 4-3b exhibits 

significant variation in the areas where the flow is separated such as the rear, while the 

area where the flow stays attached on the front of the square shows little to no variance.  

It was found the rear surface was the last to settle on a time invariant solution. 
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Figure 4-4 shows the results of the same model for a longer averaging period as a well as 

a longer delay from the start of averaging.  The characteristic time for the duration of the 

averaging is nearly 350.  The sides of the square show very little variation from one sub-

average to another.  There is a small amount of variation on the rear face which is where 

the strongest degree of resolved turbulence would be found. 

   
Figure 4-4  Sample time averaging result for square in cross flow with local Nusselt 

number (a) and averaged by surface (b); completed case 

For each model case, this data is carefully evaluated for the following criteria.  The final 

cumulative mean values for each side cannot change by more than ~1.0% than from the 

previous mean.  In addition, the values from the first one or two sub-averages is checked 

to make sure that they are generally in line with the remaining data.  This ensures that 

time averaging is not started too soon after the transient solution began to show non-

physical artifacts of the transition from steady state to transient.   

The different turbulence models were not run for the same characteristic time because the 

time required to reach a time invariant solution was not the same for each model.  In 

general, turbulence models that resolved more of the turbulence required longer run 

times, while simulations where more turbulence was unresolved required less.  This is 
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because the solutions that resolved more turbulence experienced more random fluid 

motions that required more time to reach stable averages. 

The velocity and Reynolds Stress profiles are calculated with the same start and end time 

as the average Nusselt number.   

4.3 Mesh Independence 

Multiple meshes were created for each flow problem to ensure mesh independent results. 

The meshes were set up to roughly double in cell count for each successive refinement 

and all had the same general appearance as those shown in in Figure 4-1 and Figure 4-2.  

A summary of the meshes used for the mesh independence study and their cell count is 

provided in Table 4-2  The meshes shown in Figure 4-1 and Figure 4-2 are for Mesh C in 

this table.  All of the meshes maintained a sufficiently small first cell size to achieve 

y+~1.  
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Table 4-2  Meshes used for CFD analysis 

Mesh Staggered 
tube bank 

Square in 
cross flow 

A 73,570 268,755 
B 127,566 394,763 
C 186,340 1,036,800 
D 332,021 1,600,320 
E 476,820 2,996,452 
F 1,850,760 4,849,152 
G 2,335,500  

The analysis was run for the three standard URANS models; SST, SST-SAS and RSM 

for each mesh, starting with mesh A.  The mean Nusselt number for each mesh is 

compared on a relative basis to ensure mesh independence.  These results are shown in 

and  Figure 4-5 for the staggered tube bank and Figure 4-6 for the square in cross flow.   

 

Figure 4-5  Staggered tube bank mesh sensitivity study 
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Figure 4-6  Square in cross flow mesh sensitivity study 

The results show that Mesh C is sufficiently fine for both cases because the variation to 

the next level of mesh refinement is small mesh independence is confirmed.  Since the 

PANS-SST is a variant of the SST model, Mesh C was also used for these simulations to 

demonstrate the benefits of the improved model. 

For the DES model of the staggered tube bank, Mesh E showed only a 1% improvement 

relative to Mesh D, so Mesh D was chosen.  Likewise, for the LES model, Mesh F only 

showed less than a 1% change from Mesh G.  For the DES model for the square, the 

normalized results for meshes C, D and E relative to the results of mesh E are shown in 

Figure 4-6.  The DES model has an explicit mesh dependence in its formulation and a 

truly mesh independent solution is not necessarily possible.  However, the results in this 

figure show that mesh D is sufficient.  Finally, Mesh E for the square was used for the 



www.manaraa.com

57 

LES model with this geometry.  The LES formulation is also dependent on the local mesh 

(filter) size but these results show little variance from Mesh E to F  

4.4 Calculating Reynolds Stresses 

The Reynolds stresses from the CFD solutions are a summation of the unresolved 

(modeled) and resolved components as shown in Equation (47).  The unresolved 

Reynolds stress is found from the Boussinesq hypothesis as shown in Equation (48) and 

is calculated from the modeled turbulent kinetic energy, the turbulent viscosity and the 

strain rate.  The resolved turbulence is calculated from the flow transients and the mean 

velocity as shown in Equation (49). 

𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥�������
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= 𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥�������
𝑢𝑢

+ 𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥�������
𝑟𝑟
 (47) 

𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥�������
𝑢𝑢

=
2
3𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜈𝜈𝑡𝑡 �

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� 
(48) 

𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥�������
𝑟𝑟

= (𝑢𝑢𝚤𝚤� − 𝑢𝑢′𝚤𝚤)(𝑢𝑢𝚥𝚥� − 𝑢𝑢′𝚥𝚥)������������������������ = 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥����� − 𝑢𝑢𝚤𝚤�𝑢𝑢𝚥𝚥�  (49) 

Equation (49) is derived from the standard Reynolds decomposition (𝑢𝑢𝑖𝑖 = 𝑢𝑢� + 𝑢𝑢′) and 

can also be called a two-part Reynolds decomposition.  An alternate approach is to 

employ a three-part Reynolds decomposition that also includes a separate term for a 

phase averaged coherent velocity term with a mean of 0 as shown in Equation (50) 

𝑢𝑢𝑖𝑖 = 𝑢𝑢� + 𝑢𝑢� + 𝑢𝑢′ (50) 
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In turbulent flows where there is a coherent periodic flow component like that found in a 

von Karman vortex sheet, the three-part decomposition can be used.  This serves to 

separate the impact of coherent, large scale velocity fluctuations [88] from the Reynolds 

stress calculation.  While vortex shedding is found both cases, the experimental data for 

the Reynolds stresses for the staggered tube bank used the two-part decomposition.  The 

three component decomposition was used for the square in cross flow [80], but only for 

the velocity component in the streamwise direction (u) to be consistent with the 

experimental data.  Applying a time average to Equation (50) and solving for the 

Reynolds stress results in Equation (51). 

𝑢𝑢𝚤𝚤′𝑢𝑢𝚤𝚤′������ = 𝑢𝑢𝚤𝚤𝑢𝑢𝚤𝚤�����  − 𝑢𝑢�𝚤𝚤𝑢𝑢�𝚤𝚤����� − 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖 (52) 

The Reynolds stress in direction perpendicular to the streamwise flow is calculated by 

Equation (49). 

This approach was used for the SST, SAS, PANS-SST, and DDES models.  For the RSM 

model, the unresolved Reynolds stresses from the model were used directly, rather than 

equation (48).  For the LES solution, the unresolved turbulent kinetic energy is zero and 

the sub grid viscosity is used with equation (48) to calculate the Reynolds stresses.   
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5 RESULTS OF COMPARITIVE STUDY 

The results of both geometric cases for this study are discussed separately and the final 

conclusions will be discussed together in the final section.  For both cases, the SRANS 

SST model results are included for reference.  Initially, the steady SST solution for the 

staggered tube bank and square in crossflow was run for the same mesh as the unsteady 

case.  However, neither case was able to converge properly due to flow instability.  

Consequently, the model was cut in half along the center of the tube or square in the flow 

direction and a symmetry boundary is applied.  (An equivalent Mesh C was used for this 

purpose.)  This change prevents the buckling of the flow down-stream of the bluff body 

and facilitates a numerically stable solution.  In this configuration, the square converged 

very well while the staggered tube bank continued to show difficulty converging.  

Nonetheless, the results provide a reference to compare to the unsteady models. 

5.1 Staggered tube bank 

In the confined space of the tube bank, the von Karman vortex sheet is not able to 

develop as typically found in bluff body flows.  Vortices are created from alternating 

sides of the tubes but a coherent vortex that is the same size of the tube does not 

propagate downstream.  Rather, and the flow downstream of the tube sweeps from one 

side to the other due to the instability created by the upstream tube.  As a result, the 

location of the upstream stagnation point, as well as the point where the reverse flow 

impinges on the rear of the tube, oscillates.  An example from the PANS-SST solution is 
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shown in Figure 5-1.  The instantaneous streamline plot is shown in Figure 5-1a and the 

time averaged streamlines are shown in Figure 5-1b.  The later shows where the time 

averaged separation point occurs as well as the size of recirculation bubble.  The stream 

line plots provide a qualitative information of the flow patterns in this model and will aid 

in interpreting the results of the CFD models. 

 

Figure 5-1  Instantaneous (a) and time averaged (b) flow path lines for PANS-SST 
solution for staggered tube bank 

The local Nusselt number data from the experimental data [68] and the six models used 

in this study are shown in Figure 5-2 and in Table 5-1. The results from an SRANS SST 

solution is also presented in this figure and table. 
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Figure 5-2  Local Nusselt Number, staggered tube bank, Re=40,000 

All the unsteady models are a significant improvement over the SRANS SST results 

relative to the overall shape of the local Nusselt number profile.  While the overall mean 

Nusselt number for SRANS-SST (228.2) is approximately the same as URANS version 

(234.9), the local accuracy of the URANS SST model is a significant improvement over 

the SRANS version.  This is shown in both the local distribution of the Nusselt number as 

well as the averaged values by sections of the tube.  
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Table 5-1 Mean and local results for staggered tube bank Nusselt number 

Model 
Mean Nusselt number Mean Nusselt number error 

All Front Sides Back All Front Sides Back 

Exp 222.4 306.3 207.5 178.8 +/-3% +/-3% +/-3% +/-5% 
SRANS 
SST 228.2 300.0 253.4 122.5 2.6% -2.1% 22.1% -31.5% 

SST 234.9 330.1 243.6 143.5 5.6% 7.8% 17.4% -20% 
SAS 207.6 277.1 211.1 145.7 -6.7% -9.5% 1.7% -19% 
RSM 215.3 319.0 216.2 130.7 -3.2% 4.1% 4.2% -27% 
PANS 221.5 306.6 224.8 147.6 -0.4% 0.1% 8.3% -18% 
DES 212.5 281.1 216.2 151.1 -4.5% -8.2% 4.2% -16% 
LES 203.3 280.1 188.9 169.1 -8.6% -8.6% -9.0% -5.4% 

The u- and v-velocity profiles along with the normalized Reynolds stress profiles for the 

locations shown in Figure 3-2 are provided in Figure 5-3 through Figure 5-6.  The 

experimental data [69]is also included in these figures.  The effective thermal 

conductivity is plotted for same locations as the data and can be used to interpret the heat 

transfer results.  Because the effective thermal conductivity is calculated from the 

turbulent viscosity (Equation (13)), it can also provide an indication of the degree of 

modeled turbulence.  A higher level of effectively thermal conductivity indicates a higher 

level of modeled turbulence while a value closer to the molecular thermal conductivity 

indicates that the turbulence is mostly resolved.  The local convective heat transfer from 

the surface can be described by the equation 

𝑞𝑞" = ℎ(𝑇𝑇𝑠𝑠  − 𝑇𝑇∞) = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝑇𝑇𝑓𝑓
𝜕𝜕𝜕𝜕   (53) 
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 In this equation, 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 is the effective thermal conductivity of the fluid at the surface and 

𝜕𝜕𝑇𝑇𝑓𝑓
𝜕𝜕𝜕𝜕

 is the temperature gradient in the fluid.  In a turbulent solution where the turbulent 

viscosity is zero at the surface, the effective thermal conductivity of the fluid is simply 

the molecular thermal conductivity.  The enhanced heat transfer in a turbulent flow is 

manifested by the increased temperature gradient at the surface.  This steeper gradient is 

either due to the higher effective thermal conductivity of the fluid or a higher fluid 

velocity impinging on the surface.  The former can be due to a higher degree of 

unresolved turbulence while the later can be due to a higher degree of resolved 

turbulence.  These two effects in tandem control the local Nusselt number result. 

The degree of modeled turbulence can also be directly viewed for each model as shown 

in Figure 5-9.  Here the time averaged percentage of resolved-to-total turbulent kinetic 

energy is presented at the y/D=0 plane, downstream of the tube.  The contour plots in 

Figure 5-7 shows this instantaneous vorticity magnitude (Ω = �2ΩijΩij ,Ωij =

𝜕𝜕𝑢𝑢𝑖𝑖 𝜕𝜕𝑢𝑢𝑗𝑗 − 𝜕𝜕𝑢𝑢𝑗𝑗 𝜕𝜕𝑢𝑢𝑖𝑖⁄⁄ ) for the six models.  The LES results show a very high degree of 

resolved turbulence as manifested by small concentrations of high vorticity magnitude 

evenly distributed throughout the flow space.  The other solutions show that the fluid 

rotation is more limited to the vortex created at the point of flow separation.  Finally, 

contour plots of the instantaneous turbulent viscosity ratio (𝜇𝜇𝑡𝑡/𝜇𝜇) at an arbitrarily chosen 

time step also aides in visualizing the degree and nature of turbulence modeling for each 

model.
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Figure 5-3  Staggered tube bank profiles, 2x/L=0.0, Re=40,000; u-velocity (a), v-velocity (b), effective thermal conductivity (c), 
normalized Reynolds stress 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), and 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Figure 5-4  Staggered tube bank profiles, x/D=0.507, Re=40,000; u-velocity (a), v-velocity (b), effective thermal conductivity (c), 
normalized Reynolds stress 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), and 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Figure 5-5  Staggered tube bank profiles, 2x/L=0.733, Re=40,000; u-velocity (a), v-velocity (b), effective thermal conductivity (c), 
normalized Reynolds stress 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), and 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Figure 5-6  Staggered tube bank profiles, 2y/L=0.0, Re=40,000; u-velocity (a), v-velocity (b), effective thermal conductivity (c), 
normalized Reynolds stress 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), and 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Figure 5-7  Vorticity magnitude for the staggered tube bank for the six models 
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Figure 5-8  Instantaneous turbulent viscosity ratio (turbulent viscosity/ molecular 
viscosity) for staggered tube bank for the size models 
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Figure 5-9  Ratio of resolved-to-total turbulence for the staggered tube bank y=0, 
downstream of the tube 

Experimental data is not available in the literature for Strouhal numbers or drag and lift 

coefficients for this configuration.  However, this data is compiled for the six models for 

comparative purposes in Table 5-2 to future researchers.  This table also includes the 

normalized size of the recirculation bubble, 𝑙𝑙𝑅𝑅, behind the tube.  This value is measured 

from the center of the tube to the point behind the tube where the time averaged u-

velocity is zero.  The normalizing factor is 2x/L where L is twice the spacing between 

tubes in the lateral (flow) direction.  Because the experimental velocity profile in this area 

does not clearly show where the zero velocity occurs, it is not appropriate to claim a 

specific experimental value from this data.  
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Table 5-2  Drag, Lift and Strouhal number for staggered tube bank 
Model Cd Cd’ Cl’ St 𝒍𝒍𝑹𝑹 
SST 1.172 1.562 1.271 0.722 0.619 

SST-SAS 1.273 0.316 1.431 0.662 0.654 

RSM 1.310 0.369 1.841 0.688 0.663 

PANS-SST 1.229 0.321 1.479 0.733 0.637 

DES 1.184 0.248 1.431 0.704 0.661 

LES 0.979 0.193 0.846 0.711 0.614 

5.1.1 Assessment frequency domain analysis and degree or resolved 

turbulence for the staggered tube bank 

The frequency domain of the velocity traces taken at a point downstream of the tube for 

each model are provided in Figure 5-10.  The coordinate for this point is x/D=0.733 and 

y/D=0.  The results show the dominate vortex shedding frequency created in the wake of 

the tube as well as the relative level of the other turbulent scales.  The magnitude of the 

spike for the shedding frequency relative to the magnitudes for the other frequencies 

indicates the level of resolved turbulence other than the dominant shedding frequency. 
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Figure 5-10  Frequency domain analysis of velocity trace from CFD models for staggered 
tube bank 
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The results for the SST model show a high relative amplitude at and near the vortex 

shedding frequency and is much smaller elsewhere.  This result is expected for a URANS 

model that does not include any scale resolving capability, i.e. only the dominant 

turbulent scales are resolved.  This model also showed the lowest percentage of resolved 

turbulence than the other models as show in Figure 5-9.  The SST-SAS model shows that 

while a dominate shedding frequency can be found at 114 Hz the relative amplitude of 

the other frequencies is only slightly lower, confirming the increase in resolved scale 

relative to the SST model.  This is also evidenced in the significant reduction in the 

profiles of the effective thermal conductivity values shown in Figure 5-3c to Figure 5-6c 

as well as the increased percentage of resolved scales in Figure 5-9.  In addition, this 

figure shows that the percentage of resolved scales is much higher than the baseline SST 

model. 

For the PANS-SST model, the PANS modification results in a degree of resolved scales 

that is higher than the base SST model but is less than that found with the SST-SAS 

model.  This is indicated by the ratio of resolved-to-total turbulence shown in Figure 5-9  

that is below the SST-SAS result.  The frequency domain analysis for the PANS-SST 

model is not significantly different for the SST result, indicating a similar size of the 

resolved length scales.  With the Reynolds Stress model, the dominant shedding 

frequency is evident but the peaks are smaller relative to other the frequencies.  The 

percentage of resolved turbulence is approximately the same as the PANS-SST method.  

The DES results show a very strong response at the shedding frequency despite the high 
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degree of resolved turbulence at this point (~75%).  Finally, the LES model shows a peak 

at the shedding frequency but it is not substantially larger than the response at other 

frequencies.  As expected, the LES model showed the largest degree of resolve-to-total 

turbulence with an average value at approximately 90%.  This results also shows that the 

this simulation meets the minimum recommended level of resolved turbulence [8]  

5.1.2 Heat transfer and flow profiles for the staggered tube bank 

5.1.2.1 SST Model 

The SST model generally over predicts the heat transfer, particularly near the stagnation 

point as well as along the sides of the tube.  The overall mean Nusselt number was 234.9 

relative to an experimental value of 222.4.  On the front and side portions of the tube, the 

SST model overpredicts the experimental data +7.8% and +17.4% respectively.  On the 

rear portion (> 130°) of the tube, the model underpredicts the experimental data.  (This is 

true for all of the models except for LES.)  In the rear portion the mean Nusselt number is 

143.5 relative to an experimental value of 178.8.  With the experimental data there is a 

local rise in the Nusselt number between 130° and 150° that is due to a small eddy very 

near the wall in this location.  The SST model fails to capture this result but does capture 

the increase in heat transfer at the rear most portion of the geometry where the reversed 

flow impinges on the back of the tube.   

SST model had the smallest recirculation bubble of all the models, indicating the lowest 

degree of impinging flow on the rear surface of the tube.  While this could lead to a lower 
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Nusselt number, the high effective thermal conductivity of the fluid behind the tube 

enables better heat transfer as previously discussed. 

5.1.2.2 SST-SAS Model 

The SST-SAS model is expected to improve on the accuracy of the SST model for this 

case because the flow field is dominated by non-homogeneous turbulence.  This is 

expected to activate the QSAS term for this model as shown in Equation (25).  As a result, 

the model should resolve smaller scales throughout the flow field and improve the 

accuracy relative to the baseline SST model.  However, the accuracy of the Nusselt 

numbers are lower than those found for the SST case with the overall accuracy dropping 

from a +5.6 to -6.7%.  The loss in accuracy is mainly at the front of the tube.  The SST 

model overpredicted the Nusselt number for the front region by 7.8% while the SST-SAS 

model underpredicted it by 9.5%.  Along the sides of the tube, the accuracy is much 

improved with this model and the Nusselt number values are nearly within the error bars 

of the experimental data.  In the rear portion, the SST and SST-SAS models show 

essentially the same result.  The percentage of resolved turbulence is never lower than 

82% for the SST-SAS model while the SST model is on the order of 20 percentage points 

lower.  The higher degree of resolved turbulence is also manifested in the lower effective 

thermal conductivity for all profiles.  One conclusion from this analysis is that an 

increase in the level of resolved turbulence does not directly translate to an improvement 

in accuracy.  
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One issue with the SST-SAS model in its present embodiment is that it is tuned for higher 

Reynolds number and does not appear to be well calibrated for this case [10, 11].  

Improvements to this model will be presented in the next section to address this 

overcorrection at the stagnation point. 

5.1.2.3 Reynolds Stress model 

The Reynolds Stress model provides a very good match, only slightly over predicting the 

local Nusselt number from the stagnation point to the 110°.  Slightly after that a similar 

under prediction is found in the rear section of the tube and the heat transfer results of 

local eddy centered at 140° is not captured.   The velocity and Reynolds stress profiles 

matched well with the experimental data.  Overall, the model was effective at matching 

the data but the number of times steps to reach a time invariant average was much longer 

than the of SST models.  The SST and the SST-SAS models required runs lasting 180 in 

characteristic time and the PANS-SST model required a characteristic time of 275.  In 

contrast the Reynolds Stress model was nearly double that at over 500.  The increased 

time required to reach a time invariant result would presumably be due to the increased 

randomness in the instantaneous local heat transfer caused by higher levels of resolved 

turbulence.  This was not found to be the case however.  The Reynolds Stress model had 

the longest characteristic time but did not have the highest percentage of resolved-to-total 

turbulence.  The anisotropic nature of the Reynolds Stress model may account for this 

apparent increase temporal variation in local heat transfer.  
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5.1.2.4 PANS-SST 

The PANS-SST solution showed a marked improvement in the local Nusselt number over 

the baseline SST model and the simulation matches the profile of the local Nusselt 

number very well.  The mean Nusselt number improved 5.6% to less than 1%.  The 

largest improvement was for the front and sides of the tube where the error was reduced 

from 7.8% to 0.1% and 17.4% to 8.3% respectively.  The changes to the rear facing 

portions were less significant.   

This improvement came at a cost however of 2.9 times the computational cost.  This is 

because more computation time is required to determine a mature fk field.  As presented 

in Section 2.2.4 the updates of the fk value is required because the total turbulent kinetic 

energy must be determined by the solution itself so an iterative approach is required.  To 

accelerate the process, the preliminary calculations do not need to be run to the same 

characteristic time however since converging on the final fk field is the primary goal.  

Seven updates were required to reach the a stable fk field, the final of which is shown in 

Figure 5-11. 
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Figure 5-11  Final ratio of unresolved-to-total turbulent kinetic energy, fk, field for 

PANS-SST solution for the staggered tube bank 

The ratio of unresolved-to-total turbulent kinetic energy is mainly in the range of 0.3 to 

0.4.  This result correlates well to the downstream profile of the percentage resolved-to-

total turbulence kinetic energy shown in Figure 5-9 that is around 0.6 to 0.7. The match 

of the velocity and Reynolds stress profiles do not deviate dramatically from the baseline 

SST model but are a little closer toward the LES and DES models.  

5.1.2.5 DES  

The local Nusselt number for the DES solution was below the experimental value at the 

stagnation point as well as the previously mentioned bump at centered at 140°.  The 

predicted value at the front of the tube was 281.1 relative to the experimental value of 
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306.3, an error of -8.2%.  The back portion of the tube was under predicted by 16%, 

mostly because it did not capture near wall eddy at 140°.   

The DES model showed a lower degree of resolved turbulent kinetic energy closer to the 

wall as shown in Figure 5-9.  Because more of the turbulence is modeled in this area, a 

modest decrease in the turbulent Prandtl number may improve the accuracy of the 

Nusselt number predictions. 

This model was run with mesh D (see Table 4-2).  The DES model required smaller time 

steps than the other URANS models as the CFL number was kept near or below one to be 

consistent with the recommendations for this model [58].  The resulting time step was 

25µs relative to 100µs for the URANS model and it would be expected that the required 

characteristic time would be at least as long, if not longer than the other models.  This 

was not the case however as time invariant mean values were found with a characteristic 

time of less than 60.  The summary of the ten averages used to achieve the final average, 

as shown in Figure B.10, indicates that the analysis has been run for enough time steps.    

5.1.2.6 LES 

The LES model showed a very good overall match to the local Nusselt number but with a 

small underprediction.  Of the six models evaluated in this study, the LES model 

provided the most accurate prediction at the rear of the tube and it was able to capture the 

shape of the profile in this area.  The mean value from the CFD prediction was only -

9.1% below the experimental data.  Because the low level of unresolved turbulence, any 
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adjustment to the turbulent Prandtl number found from the sub-grid viscosity would not 

benefit the Nusselt number results.   

The drag coefficient for the LES model was noticeably smaller than the other models 

with a value of 0.979 while the five other models reported a value over one.  

Additionally, the size of the recirculation zone is smaller than the other models at 0.614.  

The next largest lR value is 0.619 for the SST model while the largest of the models was 

0.663 for RSM.  As stated previously, the experimental velocity profile at the rear of the 

tube (Figure 5-6a) does not provide sufficient detail to identify the size of the 

recirculation bubble.  However, review the u-velocity experimental data in this chart does 

show that the LES results are generally shifted higher than the experimental data.  

Despite this discrepancy, the local Nusselt number on the rear portion of the tube showed 

a very good match with a mean error less than the reported error bands for the 

experimental heat transfer data.  

The y+ values for this model are on the order of 1.  The mean y+ value is 0.98 and the 

max is 2.5.  The x+ and z+ values are both < 17.  (The first cell size aspect ratios can be 

important for LES models.)  The results for this solution may have been improved if all 

the y+ values were less than 1.  (The implicit mesh dependence of the LES filter 

approach does not facilitate a full mesh independent solution.)  To achieve this, the size 

of the first element would need to be more than halved in all three directions to maintain 

the same y+, x+ and z+ values.  The net increase in the number of cells in the solution 

may have increased up to 8 times and the time step would need to be reduced by a factor 
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of two as well.  The available computer resources for this study would have made this 

adjustment impractical.   

Finally, if this much finer model did result in a perfect or near perfect match with the 

experimental data, the overall conclusion of this study would still confirm conclusions 

reached later in this chapter:  The computational cost of the improved accuracy with LES 

approach is prohibitively expensive for the industrial used and simpler URANS 

approaches are more cost effective for many applications. 

In addition to the Dynamic Smagorinsky model used as the LES simulation in this study, 

the WALE [60] model was also attempted for the staggered tube bank with the same 

mesh.  The Dynamic Smagorinsky model was found to be slightly more accurate for this 

case as shown in Figure 5-12.  For this reason, the Dynamic Smagorinsky model was 

chosen for this study because this increased in accuracy. 
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Figure 5-12  Local Nusselt number for staggered tube bank as found by the Dynamics 
Smagorinsky and WALE LES models. 

5.2 Square in cross flow 

Before evaluating the results of the six models relative to the experimental results, it is 

useful to consider the flow patterns for this geometry.  Flow separation occurs just past 

the leading face of the square and generally does not permanently reattach again 

anywhere on the square.  The downstream wake behind the square is dominated by the 

von Karman vortex sheet while local transient eddies near the rear and side faces are 

created.  The interaction of the eddies with the wall directly impacts the shape of the local 

heat transfer profile.  Smaller eddies are created on the sides within the separation bubble 

and are approximately an order of magnitude smaller than the square.  Simultaneously, 



www.manaraa.com

 

83 

larger eddies are shed off the rear of the square that are the same order of magnitude as 

the square.  A steam line plot that shows the instantaneous flow pattern for the PANS-

SST model is shown in Figure 5-13.  The oscillating flow pattern on the rear and sides of 

the square also impacts the location of the stagnation point on the front face.  As shown 

in this figure, the stagnation point is off center (y=0) in this arbitrarily chosen instant.  

The stagnation point will oscillate up and down with the action of the separated flow.  

This up and down movement of the stagnation point tends reduce the variation in the time 

averaged local Nusselt number on the leading face.  The up and down sweeping of the 

attaching-detaching turbulent flow on the rear surface also enhances the heat transfer on 

this location.  Overall, the turbulent flow impinging on the rear face results in a higher 

Nusselt number than the front face despite the lower impinging velocity. 
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Figure 5-13  Streamline plot for transient solution for PANS-SST model at arbitrary 
instant in time  

The time averaged streamlines are shown in Figure 5-14.  In this figure, the time 

averaged eddies on the rear surface are attached and centered on the geometry symmetry.  

The size of the recirculation bubble and the areas of flow separation and reattachment are 

clearly evident.  The ability of a CFD model to properly resolve these eddies, or at least 

model them in a time averaged way, directly impacts the accuracy of the local Nusselt 

number prediction.  This short qualitative discussion of these flow patterns will help 

understand the performance of the CFD models relative to the experimental data. 
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Figure 5-14  Time averaged streamline plot for PANS-SST model 

The Nusselt number results of the six unsteady models along with the SRANS SST 

model for the square in cross flow are provided in Figure 5-15.  Also plotted in this figure 

is the experimental data [85] with error bars of +/- 5% [86].  The x-axis on this chart is 

the normalized distance on from the stagnation point, s/D.  In addition to the portions of 

the square labeled at the top of Figure 5-15, the s/D values for the corner points of the 

square are provided in Figure 3-7.  
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Figure 5-15 CFD and experimental [81] results for the local Nusselt number for square in 
cross flow  

The results are also summarized by each side of the square along with the percentage 

error relative to the experimental correlation in Table 5-3  SRANS SST model 

significantly unpredicts the heat transfer on the rear surface of the square.  In contrast, 

most of the unsteady models predicted the overall mean Nusselt number reasonably well 

(< 15% error) except for the Reynolds Stress model.  This model underpredicted the 

overall Nusselt number by 23%.  Most of the error in the prediction occurred in the 

separated areas.  All the models provided very good accuracy on the upstream face 

indicating the inlet boundary conditions were sufficiently accurate to match the wind 

tunnel conditions of the experiment.  In contrast, the model results were all lower than the 
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experimental value on the rear face the and they showed a significant variation from each 

other. 

Table 5-3  Result of CFD model for the square in cross flow compared to experimental 
data  

 Nusselt Number by Side Error 
Model All Front Sides Back All Front Sides Back 
Exp. 97.9 87.0 91.6 121.0 +/-5.0% +/-5.0% +/-5.0% +/-5.0% 
SRANS 
SST  58.0 80.4 43.6 64.0 -40.8% -7.7% -52.4% -47.1% 

SST 90.6 86.6 82.9 110.2 -7.5% -0.5% -9.6% -8.9% 

SAS 83.8 86.7 73.8 101.1 -14.4% -0.4% -19.5% -16.5% 

RSM 75.4 88.0 58.0 97.5 -23.0% 1.1% -36.7% -19.4% 

PANS 88.5 85.9 76.1 115.8 -9.6% -1.3% -16.9% -4.3% 

DES 84.3 87.6 74.9 99.9 -13.9% 0.7% -18.3% -17.4% 

LES 87.4 86.1 76.0 111.4 -10.8% -1.1% -17.1% -8.0% 

As with  the staggered tube bank, the CFD velocity and Reynolds stress data is plotted 

alongside the experimental data in Figure 5-16 through Figure 5-19.  The locations for 

the profiles shown in these figures are provided in Figure 3-7.  Table 5-4 lists drag (Cd) 

drag root mean square (Cd’) and lift root mean square (Cl’) coefficients, Strouhal 

numbers as well as the size of the recirculation bubble (lR) for each case.  This is 

measured from the center of the square and is normalized by the length of the square 

sides.  The lR value is found by recording where the time averaged x-velocity is zero and 

the flow recirculates back towards the rear face of the square, indicating the size of the 

recirculation zone.  The drag and lift coefficients were calculated using the mean velocity 

found as the flow passes the center of the square rather than the inlet velocity to account 

for the blockage factor in the wind tunnel.  Results from a few published CFD studies 

also performed on this data are provided in this table as well.
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Figure 5-16  Velocity and Reynolds stress profiles for square in cross flow at x/D=0.0; u-velocity(a), v-velocity (b), effective thermal 
conductivity (c), normalized  Reynolds stress 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), and 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Figure 5-17  Velocity and Reynolds stress profiles for square in cross flow at x/D=1.0; u-velocity(a), v-velocity (b), effective thermal 
conductivity (c), normalized Reynolds stresses 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), and 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Figure 5-18  Velocity and Reynolds stress profiles for square in cross flow at x/D=2.0; u-velocity(a), v-velocity (b), effective thermal 
conductivity (c), normalized  Reynolds stresses 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), and 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Figure 5-19  Velocity and Reynolds stress profiles for square in cross flow at y/D=0; u-velocity(a), v-velocity (b), effective thermal 

conductivity (c), normalized  Reynolds stresses 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), and 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Table 5-4  Square in cross flow results for Strouhal number, drag and lift coefficients and size of recirculation bubble 
 Model Re Time 

Step (µs) Mesh St Cd Cd' Cl' lR 

Present 
Study 

SST 18,500 50 C 0.132 2.085 0.260 1.508 0.820 
SST-SAS 18,500 50 C 0.130 2.082 0.310 1.262 0.977 
RSM 18,500 50 C 0.136 2.070 0.379 1.212 1.045 
PANS-SST 18,500 50 C 0.133 2.110 0.425 1.304 1.354 
DES 18,500 20 D 0.140 2.070 0.379 1.212 1.127 
LES 18,500 7.5 E 0.132 2.015 0.247 1.196 1.263 

Exp 

Lyn 21,400   0.132 +/- 
0.004 2.1   1.38 

Lee, 1975     2.05 0.16-
0.23 

  

Vickery 1966     2.05 0.1-0.2 0.68-
1.32 

 

Previous 
Study 

Ranjan, PANS SST    0.129 1.97   1.3 

Rodi et al., 1997, LES    0.13 2.2 0.14 1.01 1.32 
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The drag and coefficients for the square in cross flow showed very good results relative 

to the experimental data.  There is more variance in the root mean square of the drag and 

lift coefficients, Cd’ and Cl’ 

Figure 5-20 shows the instantaneous turbulent viscosity ratio for the six models.  The 

contour plots use the same scale to demonstrate the relative levels of modeled turbulence.  

The ratio of resolved-to-total turbulent kinetic energy at y/D = 0 downstream of the 

square is provided in Figure 5-21.  The instantaneous vorticity magnitude is shown in 

Figure 5-22.  This figure demonstrates how the model is capturing the near wall eddies as 

well as the creation of the von Karman vortex sheet.  The increased levels of the resolved 

turbulence are evident in the SST-SAS, DES and LES models as these models resolve 

smaller scale eddies within the vortex sheet. 
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Figure 5-20  Instantaneous turbulent viscosity ratio (turbulent viscosity/ molecular 
viscosity) for square in cross flow for the size models 
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Figure 5-21  Ratio of resolved-to-total turbulence for the square in cross flow at y/D=0, 
downstream of the square 
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Figure 5-22  Vorticity magnitude for the square in cross flow for the six models 

5.2.1 Assessment frequency domain analysis and degree or resolved 

turbulence for the square in cross flow 

The frequency domain plots from the velocity traces downstream of the square are 

provided in Figure 5-23.  This Fourier transform is performed with velocity magnitude 
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data take from a point at x/D=3, on the y/D=0 line.  The experimental Strouhal number 

for this flow configuration is 0.132 +/- 0.004 [80].  From an inlet velocity of 9.7082 m/s 

the expected vortex shedding frequency is 43.03 Hz.  Some of the models (RSM, PANS-

SST, DES and LES) and showed a peak response in the frequency domain at twice the 

shedding frequency.  In this case the half harmonic was used to determine the Strouhal 

number.  The Strouhal number of all but one of the models is within the experimental 

margin of error as shown in Table 5-4.  The exception is the DES model which has a 

Strouhal number of 0.140. 
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Figure 5-23  Frequency domain analysis of velocity trace from CFD models for square in 
cross flow 
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5.2.2 Heat transfer and flow profiles for the square in cross flow 

5.2.2.1 SST model 

The steady SST model showed very poor results for this case.  The overall mean Nusselt 

number was 58, relative to the experimental value of 97.9 as shown in Table 5-3.  In 

addition, the steady SST profile showed large deviations along the sides and rear of the 

square with errors of ~50%.  The difference between the accuracy of the steady and 

unsteady SST model is significantly larger for the square in cross flow than the staggered 

tube bank.  This may be because the more confined space of the staggered tube bank 

limits the separated areas where the steady solution will be more challenged. 

The URANS SST model showed a good overall match to the experimental Nusselt 

number data with a mean error of -7.5%.  However, inspection of the local values in 

Figure 5-15 shows local variance relative to the data.  The mean error on the sides is 

9.6% lower and the mean error on the rear is 8.9% lower.  In addition, the overall shape 

of the curve does not match the data well.  The profile at the rear face for the SST model 

shows a significant concave downward profile while the experimental data is this area is 

nearly flat.  This indicates that the SST model is not resolving the smaller turbulent scales 

in the separated region that would be expected to create a more even profile.  The SST 

model under predicted the non-dimensional length of the time averaged separation bubble 

behind the square with the CFD result being 0.820 relative to an experimental value of 

1.38.  This would be expected to also correlate to a lower local Nusselt number because 

the smaller recirculation bubble would also see a lower velocity impinging on the rear 
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surface.  This was not found for this case, however.  Rather, the higher effective thermal 

conductivity as shown Figure 5-19b compensates for the lower velocities as described by 

Equation (53). 

The velocity and Reynolds stress profiles matches provided in Figure 5-16 through 

Figure 5-19 show the SST model is less accurate in a number of areas.  Despite these 

local short comings, the SST model is remarkably effective at finding the overall Nusselt 

number. 

5.2.2.2 SST-SAS model 

As discussed in section 2.2.2, the SST-SAS model is modification to the SST model that 

adjusts the local production of the specific dissipation in areas of flow separation, among 

others.  The resulting increase in resolved turbulence is expected to improve the accuracy 

of the model.  Separated regions of the square would then provide an excellent 

opportunity to demonstrate this capability.  Review of the data shows that this was true in 

one area on the sides between s/D=1.0 to s/D=1.3.  However, the results were actually 

worse on the rear portion of the square.  The overall mean Nusselt number was 14.4% 

less than the experimental data compared to the -7.5% for the SST results.  In the rear 

section, the average Nusselt number was 16.5% below the experiment while the SST 

model was 8.9% below.   

The normalized size of the recirculation bubble is 0.977, which is a modest improvement 

over the SST model.  This small increase in the impinging velocity on the rear surface 
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would be expected to result in a small increase in the heat transfer.  However, the 

effective thermal conductivity in this area is roughly a third of that found for the SST 

model as shown in Figure 5-19b.  Adjustments to the turbulent Prandtl number could 

have been made from the typical 0.85 value but this was not attempted as it was not the 

focus of the present study. 

The degree of resolved turbulence immediately behind the square for the SST-SAS model 

is ~90% while the SST model is ~70%.  The increase in the degree of resolved turbulence 

does not yield an increase in the accuracy of the heat transfer solution.  Potential 

improvements for the SST-SAS model to address this issue is discussed in Chapter 6. 

5.2.2.3 Reynolds Stress Model 

The RSM solution found significantly lower Nusselt values in all but the front facing 

portion of the square.  This model also showed the worst overall match of all the 

unsteady models considered here.  The overall Nusselt number was 75.4 compared to the 

expected value of 97.9.  The worst result occurred on the sides of the square where the 

model under predicted the data by 36.7%.  The instantaneous vorticity plot shown in 

Figure 5-22 for the RSM model shows a very different flow pattern than the other 

models.  While the von Karman vortex sheet is created, it is only apparent further 

downstream.  Nearer the rear and sides of the square a more dramatic flow separation that 

has a less oscillatory nature is found.  This flow pattern looks similar to a steady state 

solution which would suggests that a smaller time step would enable better results.  

However, when the time step was halved, the flow pattern and local Nusselt numbers 
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were the found to be same.  (For the smaller time step case, the CFL number was less 

than one in all areas except the leading corners of the square.)   

The reduced heat transfer for this model shown in Figure 5-15 is due to the separated 

flow with limited surface impingement.  This conclusion is also supported by the smaller 

size of the recirculation bubble of 1.045 than the experimental value of 1.38. 

5.2.2.4 PANS-SST model  

The PANS-SST model showed a good improvement over the SST model.  The overall 

mean Nusselt number dropped very slightly from 90.6 for the SST model to 88.5 for the 

PANS-SST while the experimental correlation was 97.9.  The largest benefit of the SST 

modification was the improved match on back half of the square sides, between s/D=1.0 

to s/D=1.3 where the local Nusselt number was within error bars of the experimental 

data.  On the rear face, the Nusselt number was 115.8 while the baseline SST model was 

110.2.  This is relative to an experimental value of 121.0.  Overall, the PANS 

modification did enable a better match to experimental data over the SST model.   

The PANS-SST solution required four updates to the fk parameters to settle on a stable 

field to generate the final solution.  This was more than the seven required for the 

staggered tube bank.  The final fk field is shown in Figure 5-24. 
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Figure 5-24  Ratio of unresolved-to-total (fk)turbulent kinetic energy for the PANS-SST 

model 

This plot shows that the majority of the region downstream of the square has a high 

degree of resolved turbulence while the steady regions at the inlet were mostly modeled.  

The PANS approach also provided an improvement in the velocity and the Reynolds 

stress profiles.  The normalized size of the recirculation bubble for this model was the 

closet of all the other models with a sight over prediction of just 2%. 

5.2.2.5 DES model  

For the DES model, the overall mean Nusselt number was 88.5, or 13.9% below the 

experimental correlation.  On the sides and rear the profile shape matched the local data 

well but there was a significant downward shift in the model results.  On the sides and 

rear of the square, the DES model was ~18% below the data.  Reviewing the profile data 

in Figure 5-16 through Figure 5-19, good matches are found for the flow data.  Like the 

LES model, DES showed a very high degree of resolved as shown in Figure 5-21.  Unlike 

the staggered tube bank, the degree or resolved turbulence was very high throughout the 
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flow field.  As such adjustments to the turbulent Prandtl number is unlikely to provide 

much improvement to the Nusselt number results. 

5.2.2.6 LES model  

The overall mean Nusselt number for the LES model was -10.8% below the experimental 

value and the error for the sides was -17.1%.  While other models reported better mean 

Nusselt number values for a side, the LES results showed the best match for the shape of 

the experimental data.  The mean error on the rear of the square as -8.0% which on 

average is below the PANS-SST value of -4.3% but the LES solution provided a flatter 

profile that the other models and better match to the experimental data in this way.  The 

LES data also closely matched the side portions between s/D=1.0 and s/D=1.4 similar to 

the PANS-SST result.  The profiles for the u- and v-velocity data matched the LES 

results very well and the size normalized side of the recirculation bubble was 1.263 

which is only slightly smaller than the experimental value of 1.38.  The wall resolution 

for this case was as follows:  y+ ~ 1, x+ < 11 and z+ < 16. 

The Wall Adapting Local Eddy-Viscosity (WALE) model [60] was also attempted for 

this case but the results were less accurate than the Dynamic Smagorinsky model and it 

was not used as part of this study. 

5.3 Summary of results 

The Reynolds number for both cases considered in this study are similar but the flow 

regimes are quite different.  The turbulence in the staggered tube bank is more evenly 
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distributed throughout the flow space than the square in cross flow.  Another difference 

between the two cases is that the close spacing of the staggered tubes limits the degree of 

flow separation.  In contrast the flow moving around the square pushes the fluid away to 

create a much larger wake. 

The six models all predicted similar Nusselt number profiles for the tube bank.  There is 

some variance but not the same extent as the square.  The rear face of the square 

demonstrated the largest variation between the models.  Considering both cases together, 

the PANS-SST model was the most accurate but the LES model provided the best match 

for the profile shape, albeit at consistently lower value. 

The failure of all but the LES solution to capture the previously discussed bump at 140° 

from the stagnation point has a significant impact on the accuracy of the models in this 

area.  The SST-SAS and PANS-SST models may have showed increased accuracy in this 

area if the mesh was locally refined to allow the solution to capture the near wall eddy. 

The challenge for the selecting a turbulence model for a new problem is to know which 

approach will provide the most accurate results with the available computer resources.  

While a turbulence model can be developed to address specific flow conditions, this 

study has shown that a particular problem may not actually show the expected 

improvement.  Despite this, some conclusions can be drawing from the results of the two 

cases studied here.  These conclusions have already been presented in the text but are 

include in Table 5-5 for clarity.   
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Table 5-5  Summary of strengths and weaknesses for the six turbulence models 
Model Strengths Weakness 
SST Good overall mean Nusselt number 

accuracy. 
Local Nusselt number profile varied 
from data. 

SAS-SST Resolved more turbulence. Does not improve SST model for these 
cases. 

RSM Good mean and local Nusselt 
number accuracy for staggered tube 
bank. 

Poor accuracy for square in cross flow.   

PANS-SST Good improvement over the 
baseline SST model, particularly 
with respect to local Nusselt 
number profile. 

Updates to fk field require more 
computer time along with additional 
intervention of the user. 

DES Good matching of local Nusselt 
number profile. 

Underprediction of mean Nusselt 
number. 

LES Best match to local Nusselt number 
profile.  

Underprediction of mean Nusselt 
number but better than DES. 

5.4 Evaluation of Accuracy relative to Computational cost 

The model error relative to the experimental value for the two cases is provided in Figure 

5-25 Figure 5-26. The absolute values of the errors are presented to facilitate a better 

interpretation of the results.  The computer run times are normalized to the time required 

for the URANS-SST solution.  This provides a convenient basis to evaluate each model.   
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Figure 5-25 Accuracy of absolute value mean Nusselt number error relative to 

computational cost for staggered tube bank 

The accuracy of the experimental data should also be considered when evaluating this 

data.  The overall accuracy of the staggered tube bank mean Nusselt number is +/- 3.5% 

with the front, side and back accuracy being +/-3.0%, 3.2% and 5.0% respectively.  For 

the square in cross flow the overall and local accuracy is +/- 5% 

With the staggered tube bank, the PANS-SST and the RSM models provide overall mean 

Nusselt number results that are within the experimental error while the SST and DES are 

slightly outside it.   The good LES profile match is not represented in this chart but the 

large computational cost is clearly evident relative to the other models.  The DES model 

had a reasonable run time due to the relatively limited number of time steps required but 
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the only significant improvement was in the side region relative to the SST results.  

Overall, the SST model provides a good balance of cost relative to accuracy and the SAS-

SST and PANS-SST showed good improvement for about ~3 times the computational 

cost. 

 
Figure 5-26  Accuracy of absolute value mean Nusselt number error relative to 

computational cost for square in cross flow 

For the square in cross flow case, the SST model again provided a good balance of 

accuracy relative to computational cost.  This model did show some variance to the 

experimental results but the overall mean values were quite good.  The PANS-SST model 

showed a noticeable improvement for the local Nusselt numbers at the rear of the square 

as well as a portion of the square sides.  The most challenged model for this case was the 
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RSM model where the time required to reach stable mean values was nearly twice that of 

LES.  While this indicates that the more random aspects of the turbulence are resolved, 

the benefits in accuracy is not found.   

The SAS-SST model, which was developed to improve on the accuracy of flow 

conditions found in these two cases, actually saw a decrease in the accuracy in the 

separated areas.  Since the computational costs were comparable to the SST model, it 

would be very useful to investigate ways to improve the accuracy of the SAS approach.  

This is the top of the next chapter of this study. 
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6 IMPROVEMENT OF SCALE ADAPTIVE SIMULATION 

MODEL FOR SST 

The PANS model provides excellent results relative to the other models, particularly for 

the grid size and computer resources used.  However, this model would be difficult to 

implement in commercial CFD software due to the sequence of steps required gain a final 

solution.  The SAS model on the other hand is quite straight forward to use and is already 

available in ANSYS Fluent.  Unfortunately, the present work has shown that the SAS 

model is not particularly effective for the two cases evaluated here.  In fact, the SAS 

model is generally worse than the SST model it was intended to improve.  This is 

particularly true on the rear face of the square in cross flow. 

This section presents a novel improvement to the SAS model intended to increase the 

accuracy of the square in cross flow and staggered tube bank results already presented. 

6.1 Model basis and derivation 

The SAS model is presented in a number of papers authored by Florian R. Menter with 

other contributors [10, 11, 89-91].  This section will summarize the development of this 

model based on the references listed. 

Two equation turbulence models use two transport equations to model the two 

independent scales[10].  The first equation is typically the turbulent kinetic energy, k and 

the second can vary depending on the type of model.  The k equation can be modeled 
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directly by developing terms to represent the convection, production, destruction and 

diffusion of k.  The development of the second equation for the dissipation, ε, or the 

specific dissipation, ω, however is typically derived by analogy of the k equation and the 

terms are created by making order of magnitude arguments [10].  This is because the 

specific terms of these transport equations cannot be derived directly. 

The development of the Scale Adaptive Simulation is based on work by Rotta [46, 92] to 

derive an exact transport equation for kL as the second scale determining equation. (kL is 

the product of the turbulent kinetic energy k and L is the integral turbulent length scale.) 

The derivation of the kL transport equation is first made for a simple shear flow (linear 

velocity gradient) which creates homogenous turbulence.  This derivation will be 

summarized in brief here with particular attention paid the subsequent improvement of 

this model presented later in this chapter.  This model is later generalized to fully 3-D 

flow and transformed into the transport equation for specific dissipation for the SST-SAS 

model. 

This kL term is defined as the integral of the two-point correlation tensor as shown in 

equation (54) and (55). 

𝑘𝑘𝑘𝑘 = 3
16 ∫ 𝑅𝑅𝑖𝑖𝑖𝑖�𝑥⃗𝑥, 𝑟𝑟𝑦𝑦�𝑑𝑑𝑟𝑟𝑦𝑦

∞
−∞ ,  (54) 

The correlation tensor is defined as product of the random component from two velocity 

probes separated by a displacement vector ry.  This is shown graphically in Figure 6-1.  

The two-point correlation tensor is defined as 
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𝑅𝑅𝑖𝑖𝑖𝑖 =  𝑢𝑢′𝚤𝚤(𝑥⃗𝑥)𝑢𝑢′𝚤𝚤(𝑥⃗𝑥, +𝑟𝑟𝑦𝑦)���������������������  (55) 

 
Figure 6-1  Two-point correlation measurement 

The curve for the correlation tensor for a simple shear flow is shown in Figure 6-2. 

 
Figure 6-2  Correlation Tensor for turbulent flows  

The correlation tensor will result in the value of 1 then ry is diminishingly small because 

the transient components of the velocity vector will be identical.  At a sufficient distance 

apart, the correlation tensor of the two probes will be 0.  Integrating the expression yields 

a flow parameter that is defined as Ψ = 𝑘𝑘𝑘𝑘. 

Deriving the transport equation (56) for Ψ [10] yields a set of terms that can be defined 

explicitly without resorting to scaling arguments or analogies with the k equation [10].   
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𝜕𝜕Ψ
𝜕𝜕𝜕𝜕
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−
3

16
𝜕𝜕𝑢𝑢�(𝑥⃗𝑥)
𝜕𝜕𝜕𝜕

� 𝑅𝑅21𝑑𝑑𝑟𝑟𝑦𝑦
∞

−∞
−

3
16

�
𝜕𝜕𝑢𝑢��𝑥⃗𝑥 + 𝑟𝑟𝑦𝑦�

𝜕𝜕𝜕𝜕
𝑅𝑅12𝑑𝑑𝑟𝑟𝑦𝑦

∞

−∞
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+ 3
16
�  𝜕𝜕

𝜕𝜕𝑟𝑟𝑘𝑘
�𝑅𝑅(𝑖𝑖𝑖𝑖)𝑖𝑖 − 𝑅𝑅𝑖𝑖(𝑖𝑖𝑖𝑖)�𝑑𝑑𝑟𝑟𝑦𝑦
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8
� 𝜕𝜕2𝑅𝑅𝑖𝑖𝑖𝑖

𝜕𝜕𝑟𝑟𝑘𝑘𝜕𝜕𝑟𝑟𝑘𝑘
𝑑𝑑𝑟𝑟𝑦𝑦

∞

−∞
  

Destruction  

−
𝜕𝜕
𝜕𝜕𝜕𝜕

�
3

16
� �𝑅𝑅(𝑖𝑖𝑖𝑖)𝑖𝑖 −  

1
𝜌𝜌

(𝑝𝑝′𝑣𝑣′������ + 𝑣𝑣′𝑝𝑝′������)� 𝑑𝑑𝑟𝑟𝑦𝑦
∞

−∞
− 𝜈𝜈

∂Ψ
𝜕𝜕𝜕𝜕
� (56) 

Diffusion   

The production term is of particular interest, both for the unique nature of this derivation 

but also for the planned improvement for the Scale Adaptive approach.  The second part 

of the production term, − 3
16

𝜕𝜕𝑢𝑢�(𝑥⃗𝑥)
𝜕𝜕𝜕𝜕 ∫

𝜕𝜕𝑢𝑢��𝑥⃗𝑥,+𝑟𝑟𝑦𝑦�
𝜕𝜕𝜕𝜕

𝑅𝑅12𝑑𝑑𝑟𝑟𝑦𝑦
∞
−∞ ,  can be expanded with a Taylor 

series as shown in Equation (57) 

 

𝜕𝜕𝑢𝑢��𝑥⃗𝑥 + 𝑟𝑟𝑦𝑦�
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝑢𝑢�(𝑥⃗𝑥)
𝜕𝜕𝜕𝜕 + 

𝜕𝜕2𝑢𝑢�(𝑥⃗𝑥)
𝜕𝜕𝑦𝑦2 𝑟𝑟𝑦𝑦 +

1
2 
𝜕𝜕3𝑢𝑢�(𝑥⃗𝑥)
𝜕𝜕𝑦𝑦3 𝑟𝑟𝑦𝑦2 + ⋯ (57) 

With this expansion the production term can be re-written as 
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𝜕𝜕𝜕𝜕�𝑥⃗𝑥+𝑟𝑟𝑦𝑦�
𝜕𝜕𝜕𝜕 ∫ 𝑅𝑅12𝑑𝑑𝑟𝑟𝑦𝑦

∞
−∞ →  

𝜕𝜕𝑢𝑢�(𝑥⃗𝑥)
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∞
−∞ + 𝜕𝜕2𝑢𝑢�(𝑥⃗𝑥)

𝜕𝜕𝑦𝑦2 ∫ 𝑅𝑅12𝑟𝑟𝑦𝑦𝑑𝑑𝑟𝑟𝑦𝑦 + 1
2

∞
−∞

𝜕𝜕3𝑢𝑢�(𝑥⃗𝑥)
𝜕𝜕2 ∫ 𝑅𝑅12𝑟𝑟𝑦𝑦2𝑑𝑑𝑟𝑟𝑦𝑦

∞
−∞ + ⋯  

(58) 

Equation (58) shows a second and third order term for the production of Ψ from the 

Taylor expansion.  In the original derivation of this transport equation for homogenous 

turbulence, it was concluded by Rotta that the second order term could be eliminated.  

For the case of homogeneous turbulence, the function R12 is symmetric and the product 

of R12ry is asymmetric.  The integral is then zero as the -ry and +ry contributions cancel 

each other [10]. 

Further work develops some coefficients, along with the models for the remaining terms 

to develop the kL transport equation [10].  

𝜕𝜕Ψ
𝜕𝜕𝜕𝜕 + 𝑢𝑢𝑗𝑗

𝜕𝜕Ψ
𝜕𝜕𝑥𝑥𝑗𝑗

= −𝑢𝑢′𝑣𝑣′������ �𝜁𝜁1𝐿𝐿
𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕 + 𝜁𝜁2𝐿𝐿3

𝜕𝜕3𝑢𝑢�
𝜕𝜕𝑦𝑦3� − 𝜁𝜁1𝑘𝑘3/2 +

𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜐𝜐𝑡𝑡 

𝜎𝜎Ψ
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕
� (59) 

This transport equation is similar to other dissipation (ϵ), and specific dissipation (ω) 

models except for the inclusion of the third derivative in the production term of kL.   

The 𝐿𝐿3 𝜕𝜕
3𝑢𝑢�

𝜕𝜕𝑦𝑦3
 term is problematic however for a few reasons.  The first is that the third 

derivative does not represent a physical process of the modeled turbulence.  The second 

is that the model does not adequately model the boundary layer in the logarithmic layer 

because the sign of the source term is incorrect.  This results in the third derivative term 
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acting a source, rather sink in this region.  These issues led researchers in the abandon 

this model in favor of other more promising methods, like the 𝑘𝑘 − 𝜀𝜀 model [10]. 

A recent re-evaluation of this model by Menter et. al. was used to develop the SAS 

model.  This is done by first reconsidering the assumption that the third derivative rather 

than the second is appropriate to use in the production term.  While it is true that the 

integral of the R12ry is zero for homogenous turbulence, homogenous turbulence occurs 

only when constant or zero shear exists.  In this case the 𝜕𝜕
2𝑢𝑢�(𝑥⃗𝑥)
𝜕𝜕𝑦𝑦2

 and 𝜕𝜕
3𝑢𝑢�(𝑥⃗𝑥)
𝜕𝜕2𝑦𝑦3

 are themselves 

zero and so attempts to evaluate the integral are not relevant. 

If however, the expansion of the 
𝜕𝜕𝑢𝑢��𝑥⃗𝑥+𝑟𝑟𝑦𝑦�

𝜕𝜕𝜕𝜕 ∫ 𝑅𝑅12𝑑𝑑𝑟𝑟𝑦𝑦
∞
−∞  term is considered for 

inhomogeneous flow (Figure 6-3), the second order term is non-zero and the higher order 

terms can be neglected.  

 

Figure 6-3  Correlation tensor of inhomogenous flow 

This alternate approach creates the second order production term where this term is zero 

under homogeneous flow and non-zero under inhomogeneous flow.  This is shown in 

Equation (60) 
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−
3

16
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∞

−∞
 (60) 

The second order term can then be written as shown in equation (61) and the von Karman 

length scale is defined in equation (62).  𝑃𝑃𝑘𝑘 is defined as −𝑢𝑢′𝑣𝑣′������ 𝜕𝜕𝑢𝑢�
𝜕𝜕𝜕𝜕

  

 

−
3

16
𝜕𝜕2𝑢𝑢�(𝑥⃗𝑥)
𝜕𝜕𝑦𝑦2 � 𝑅𝑅12𝑟𝑟𝑦𝑦𝑑𝑑𝑟𝑟𝑦𝑦 =  −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑃𝑃𝑘𝑘

Ψ
𝑘𝑘
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𝐿𝐿
𝐿𝐿𝑣𝑣𝑣𝑣
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2∞

−∞
 (61) 

𝐿𝐿𝑣𝑣𝑣𝑣 = 𝜅𝜅 �
𝜕𝜕𝑢𝑢�/𝜕𝜕𝜕𝜕
𝜕𝜕2𝑢𝑢�/𝜕𝜕𝑦𝑦2� (62) 

With this alternate derivation of the production term, the issue of the incorrect sign in the 

logarithmic region of the boundary layer is resolved as is its non-physical representation 

of the physics [10].  The resulting transport equation of Ψ is provided in equation (63). 

𝜕𝜕Ψ
𝜕𝜕𝜕𝜕 + 𝑢𝑢�𝑗𝑗

𝜕𝜕Ψ
𝜕𝜕𝑥𝑥𝑗𝑗

=
Ψ
𝑘𝑘 𝑃𝑃𝑘𝑘 �𝜁𝜁1 −  𝜁𝜁2 �

𝐿𝐿
𝐿𝐿𝑣𝑣𝑣𝑣

�
2

� − 𝜁𝜁3𝑘𝑘3/2 +
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜐𝜐𝑡𝑡 

𝜎𝜎Ψ
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

� (63) 

The unique aspect of this model relative to other scale resolving transport equations is the 

presence of the second velocity derivative in the production term.  This term will be 

activated in locations where second order variation, i.e. local accelerations or deceleration 

in flow field occurs.  As such it is well suited to model unsteady flow where flow 

separations occur.  Elsewhere, the term will be zero. 
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In the subsequent development of the model, it was deemed appropriate to use this same 

approach to derive a transport equation for √𝑘𝑘𝐿𝐿, rather than kL.  “This change is mainly 

motivated by practical considerations and a slightly superior performance.” [91]  

The complete k-√𝑘𝑘𝐿𝐿, generalized for full three-dimensional flow and Φ = √𝑘𝑘𝐿𝐿 is written 

as: 

𝜕𝜕(ρk)
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�
𝜕𝜕(ρk)
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= 𝑃𝑃𝑘𝑘 − 𝐶𝐶𝜇𝜇
3/4 ∙ 𝜌𝜌

𝑘𝑘2

Φ +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜇𝜇𝑡𝑡 

𝜎𝜎k
𝜕𝜕Φ
𝜕𝜕𝑥𝑥𝑗𝑗

� 
(64) 

𝜕𝜕(ρΦ)
𝜕𝜕𝜕𝜕 + 𝑢𝑢�𝑗𝑗

𝜕𝜕(ρujΦ)
𝜕𝜕𝑥𝑥𝑗𝑗

=
Φ
𝑘𝑘 𝑃𝑃𝑘𝑘 �𝜁𝜁1 −  𝜁𝜁2 �

𝐿𝐿
𝐿𝐿𝑣𝑣𝑣𝑣

�
2

� − 𝜁𝜁3𝜌𝜌𝜌𝜌 +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜇𝜇𝑡𝑡 

𝜎𝜎Φ
𝜕𝜕Φ
𝜕𝜕𝑥𝑥𝑗𝑗

� 
(65) 

𝜇𝜇𝑡𝑡 = 𝐶𝐶𝜇𝜇
1/4𝜌𝜌Φ; 𝐿𝐿 = Φ

√𝑘𝑘
 

𝐿𝐿𝑣𝑣𝑣𝑣 = 𝜅𝜅 �𝑈𝑈′
𝑈𝑈"
�; 𝑈𝑈" = �𝜕𝜕2𝑢𝑢�𝑖𝑖

𝜕𝜕2𝑥𝑥𝑘𝑘

𝜕𝜕2𝑢𝑢�𝑖𝑖
𝜕𝜕2𝑥𝑥𝑗𝑗

 ; 

𝑈𝑈′ = 𝑆𝑆 = �2𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖; 𝑆𝑆𝑖𝑖𝑖𝑖 = 1
2
�𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� 

 

The von Karman length scale 𝐿𝐿𝑣𝑣𝑣𝑣 is found from the quotient of the magnitude of the first 

and second derivative of the velocity field. 

This model is referred by the Menter [10] as the KSKL model (K Square root KL) and is 

a complete model.  However, the SAS approach has been further developed to become a 

modification of the SST model.  By transforming the variables and calculating 
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coefficients, the model can be more directly based on an existing and well tested model 

while still benefitting from the inclusion of the von Karman length scale is the second 

equation.   

The Φ transport equation can be recast [93] as one for specific dissipation by with  

Φ = Cμ
−14 𝑘𝑘

𝜔𝜔
.  This allows the incorporation of the SAS modification into the 𝑘𝑘 − 𝜔𝜔 model.  

With the inclusion of the blending functions, transport equation becomes  

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕 +

𝜕𝜕�𝜌𝜌𝑢𝑢�𝑗𝑗𝜔𝜔�
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝛼𝛼𝛼𝛼𝑆𝑆2 + 𝜁𝜁2� 𝜅𝜅𝜅𝜅𝑆𝑆2 �
𝐿𝐿
𝐿𝐿𝑣𝑣𝑣𝑣

�
2

−
2𝜌𝜌
𝜎𝜎Φ

𝑘𝑘
𝜔𝜔2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

− 

𝜌𝜌𝜌𝜌𝜔𝜔2 + 2(1 − 𝐹𝐹1)𝜌𝜌
1
𝜎𝜎𝜔𝜔,2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜇𝜇 + 𝜎𝜎𝜔𝜔𝜇𝜇𝑡𝑡 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� 

(66) 

The SAS terms added to the base SST model can then be grouped as the “QSAS term” as 

shown in (67).  

 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜅𝜅𝜅𝜅𝑆𝑆2 �
𝐿𝐿
𝐿𝐿𝑣𝑣𝑣𝑣

�
2

−
2𝜌𝜌
𝜎𝜎Φ

𝑘𝑘
𝜔𝜔2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

 (67) 

Some additional modifications are required to the QSAS term to resolve some final issues.  

It is important that in areas where the SAS terms is not activated, the model will revert 

back to the standard SST model.   Therefore, a max() function is applied to the QSAS term 

to ensure that this term does not become negative.  In this case the specific dissipation 

equation will revert back to the baseline SST model. The second term of the QSAS 
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equation becomes a significant contribution in areas where there are significant gradients 

in the specific dissipation.  This typically occurs inside boundary layers.  The QSAS term 

is then modified to include the gradient of the k field as well through the use of a max() 

function.  This again is included to ensure the performance of the base SST model is 

preserved and results in the following equation. 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 �𝜅𝜅𝜂𝜂2𝑆𝑆2 �
𝐿𝐿
𝐿𝐿𝑣𝑣𝑣𝑣

�
2

−
2𝜌𝜌
𝜎𝜎Φ

𝑘𝑘 ∙ max�
1
𝜔𝜔2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

,
1
𝑘𝑘2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� , 0� (68) 

The FSAS terms is included in the earlier version of the model but is later dropped.  When 

this later portion of the model was first presented [93] a few FSAS terms were attempted, 

ranging from 1.0 to 1.5 and the value of 1.25 was selected.  In later versions [10] the 

value of 1.0 is used and the FSAS variable is dropped from the expression because of 

improvements to the calculation of the von Karman length scale which is presented next. 

The remaining issue with the SST-SAS model as presented thus far is to ensure proper 

damping on the higher end of the turbulence spectrum [94]  To achieve this, the von 

Karman length scale is modified to ensure that the smallest scales are dissipated 

appropriately.  This calibration is achieved by calibrating the model coefficients to ensure 

that the turbulent energy cascade of the model follows the -5/3 slope rule [8].  This 

approach is often referred to the high wave number damping limiter. 

𝐿𝐿𝑣𝑣𝑣𝑣 = max�𝜅𝜅 �𝑈𝑈
′

𝑈𝑈"
�

2

,𝐶𝐶𝑠𝑠�
𝜅𝜅𝜂𝜂2

𝛽𝛽 𝐶𝐶𝜇𝜇⁄ −𝛼𝛼
Δ� ; Δ = √𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉3    (69) 
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The 𝛽𝛽 and 𝛼𝛼 terms are from the SST model and are calculated with the standard F1 

blending function for this model.  The full model along with the coefficients used were 

presented earlier (Sections 2.2.1 and 2.2.2) and will not be restated here. 

6.2 Review of recently published work 

The Scale Adaptive Simulation [10] has been used in a wide variety of research 

applications.  The SST-SAS model and other variants have been used to evaluate its 

effectiveness for bluff body flows and has been compared to DES and other turbulence 

models.   

SAS and DES models were used to simulate a NACA0021 airfoil at a high angle of 

attack as well as a circular cylinder in cross flow[95]. This paper used the same SST-SAS 

model used in the present study. It was found that the mean flow variables can be 

predicted well with the SST-SAS model although the turbulence was overpredicted 

relative to the experimental data in the recirculation bubble.  The size of the separation 

bubble was smaller as a result.  This is consistent with the results of the square in cross 

flow.   

SST-SAS and SST-DES models were used to study an AS239 airfoil at a maximum lift 

condition [96]. The SST-SAS model showed good or better results than DES for pressure 

coefficients and velocity profiles while avoiding grid induced separation. 

The cooling of the trailing edge of a gas turbine blade was modeled with SST-SAS 

among other URANS methods and compared to experimental data [97].  This study also 
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compared the URANS SST and SST-SAS models used in the present study relative to 

PIV experimental measurements.  It was found that the SST-SAS model showed a 

significantly improved prediction of the cooling effectiveness for the SST model.  

However, the shedding frequency for both models was high relative to the experimental 

data. 

The same square in cross flow case used in this study [80] was also investigated [98] with 

the KSKL model along with other CFD models.  One aspect of this study was to calibrate 

a coefficient, Cs, to adjust the high wave number damping of the modified von Karman 

length scale as shown in Equation (70).  This is not the same equation used in the SST-

SAS model used in the present study and the Cs coefficient does not play the same role in 

the equation. 

𝐿𝐿𝑣𝑣𝑣𝑣 = max�𝜅𝜅
𝑈𝑈′

U" ,𝐶𝐶𝑠𝑠Δ�  (70) 

This author used a Cs value of 0.262 based on a study of decaying isotropic turbulence 

(DIT).  It was found that best results were found with the 0.262 value for flow profiles, as 

well as global quantities like drag and lift coefficients.  One conclusion of this study is 

that a calculation of the Cs coefficient should be based on a calculation from field 

variables because they found the results to be sensitive to this input.  In the present SST-

SAS model the 𝐶𝐶𝑠𝑠 coefficient is in fact calculated from field variables as found in 

equation (69).  In the present study, the effective Cs values found from this equation were 
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0.25 near the wall and 0.19 away from the wall which is close to the previously stated 

0.262 value.   

6.3 Improvement to the Scale Adaptive Simulation Model 

6.3.1 Rationalization for improvement 

Review of SST and SST-SAS model results show that the SAS modification does 

improve that accuracy in some areas of the two cases but makes it worse in others.  For 

the staggered bank ( 

Figure 6-4 and Table 6-1) the Nusselt number for the front of the tube drops from 330.1 

to 274.3 relative to an experimental value of 306.3, effectively over correcting from the 

higher prediction of the SST model.  Along the sides of the center tube, the accuracy is 

significantly improved with much of the SST-SAS results near or within the margin of 

error for the experimental data.  In the rear portion, the SST-SAS model shows a modest 

improvement in the local Nusselt number prediction although both model results are 

approximately 20% lower than the experimental value.  For the square in cross flow 

(Figure 6-5 and Table 6-1) the front of the square Nusselt number results are the same 

because the QSAS term is not sufficiently activated to impact the solution.  Along the 

sides, the SST-SAS model shows generally the same results for the first portion of the 

side (s/D = 0.5 to 1.0) but a significant improvement relative to the SST model along the 

second portion, from (s/D = 1.0 to 1.3.)  On the rear face, the SST model under predicts 

the mean local Nusselt number and the shape of the CFD results shows a curved profile 
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while the experimental data is generally flat.  In comparison, the SAS model shows a 

slightly less curved profile but is noticeably lower, further away from the experimental 

data.  The mean Nusselt value for the experimental data on the rear surface is 121.0 

relative to 110.2 for the SST and 101.1 for the SST-SAS model.  Overall, the mean and 

local Nusselt numbers are not significantly improved over the SST model and in some 

areas, are made worse by the SAS modification.  This is particularly true at the front of 

the tube and rear of the square stagnation points when the SAS term is fully activated. 

 
Figure 6-4 Local Nusselt number for staggered tube bank 
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Figure 6-5 Local Nusselt number for square in cross flow 

 
Table 6-1 Mean Nusselt Number results for SST and SAS models 

 Staggered Tube Bank Square in Cross flow 
All Front Side Back All Front Side Back 

Experiment 222.4 306.3 207.5 178.8 97.9 87.0 91.6 121.0 
SST 234.9 330.1 243.6 143.5 90.6 86.6 82.9 110.2 

SAS 207.6 277.1 211.1 145.7 83.6 86.4 73.8 101.1 

 

Reviewing some of the local velocity data at the downstream centerline for both cases 

(Figure 6-6), the SST-SAS model provides an improved prediction to the x velocity 

component for the staggered tube bank.  With the square in cross flow, the SST model is 

found to severely under predict the size of the separation bubble with an lR value of 0.820 

relative to an experimental value of 1.38 while the SST-SAS model is an improved 0.977. 
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Figure 6-6  Time averaged Velocity profiles for staggered tube bank and square in 
crossflow for SST and SST-SAS models on y=0 axis, downstream of object 

6.3.2 Evaluation of SST-SAS model parameters 

To understand the local impact of the QSAS term modification to the specific dissipation 

equation, the two constituent parts were evaluated for both cases.  Time averaged profiles 

from the CFD solution were found to determine when the QSAS term is activated.  This 

allows a detailed understanding of how the SAS modification is behaving for the two 

cases considered in this study.   The QSAS term contains two main components: a 

production term and a gradient term as shown in Equation (71).   

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = max �𝜌𝜌𝜂𝜂2𝜅𝜅𝑆𝑆2 �
𝐿𝐿
𝐿𝐿𝜈𝜈𝜅𝜅

�
2

− 𝐶𝐶
2𝜌𝜌𝜌𝜌
𝜎𝜎Φ

max�
1
𝜔𝜔2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

,
1

  𝑘𝑘2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�  , 0� 

                              Production                             Gradient 

(71) 

These two terms, along with the QSAS term itself are provided for the staggered tube bank 

in Figure 6-7 and Figure 6-8 .  This data includes a contour plot and profiles from 

selected locations.  The production and gradient terms are temporally and spatially 
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averaged (in the z-direction) prior to the application of the max() function.  Because the 

max () function introduces a non-linearity, the curves and contour plots will not always 

show the QSAS term as a simple subtraction of production term from the gradient term.  

As a result, the data may appear counterintuitive in some areas. 

 

Figure 6-7  Staggered tube bank QSAS terms for the specific dissipation equation; QSAS(a) 
production term (b), and gradient term (c) 
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 Figure 6-8  Staggered tube bank local distribution of QSAS terms for the specific 

dissipation equation; x=0.5 (a), x=0.733 (b),y=0, upstream (c), y=0, downstream (d) 

The QSAS term is generally the same order of magnitude throughout the flow space.  The 

gradient term, while lowering the overall QSAS value in general, becomes particularly 

dominant near the wall (a normalized distance < 0.05), and reduces the QSAS term in this 

area.  This behavior of the gradient term is due to the change in the second derivative 

terms at the boundary. 

The same data from the SST-SAS model for the square in crossflow are provided in 

Figure 6-9 and Figure 6-10.  Insets are provided in Figure 6-9 to provide better detail near 

the square.  These results look significantly different than the staggered tube bank as the 
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QSAS term is only activated in the wake region of the square.  On the impinging surface, 

there is some activation of the QSAS term but it is low enough that is does not 

significantly impact the solution.  This is evidenced by the fact that the SST and SST-

SAS model show nearly identical results for the Nusselt number on the upstream 

impinging surface. 

 

Figure 6-9  Square in cross flow QSAS terms for the specific dissipation equation; QSAS(a) 
production term (b), and gradient term 
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Figure 6-10  Square in cross local distribution of QSAS terms for the specific dissipation 
equation:  x=0 (a), x=0.5 (b), y=0, upstream of square (c), y=0, downstream of square (d) 

The profiles of the QSAS terms are provided at the square midline, x/D=0 (Figure 6-10a), 

and at the rear edge of the square at x/D=0.5 (Figure 6-10b).  The QSAS terms at y/D=0 

are provided in Figure 6-10c and Figure 6-10d for upstream and downstream of the 

square, respectively.  Outside the detached boundary layer, the production term 

dominates as the gradient term is a few orders of magnitude smaller.  Within the 

recirculation zone, the gradient term becomes more dominant and reduces the overall 

QSAS term.  At the center line on the impinging face of the square, the production term 

dominates until very near the surface due to the small boundary layer in this area as 
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shown in Figure 6-10d.  Overall, the QSAS term in this area is two orders of magnitude 

smaller than the sides and rear of the square and the local Nusselt numbers are not 

noticeably impacted. 

On the downstream y/D=0 profile, there are three zones of significance to consider.  Near 

the wall (0.50 < x/D < 0.55), the gradient term dominates and significantly reduces the 

overall QSAS term as was found in the staggered tube bank.  In the next region, slightly 

away from the wall and to the extending end of the time averaged separation bubble (0.55 

< x/D < 0.95), the gradient terms is reduced and the QSAS term is slight larger by about 

half an order of magnitude (3x).  After that, the gradient term again dominates and 

reduces the QSAS term. 

In summary, the two cases present different conditions to test improvements of the SST 

model with the QSAS term modifier.  In the staggered tube bank, the QSAS terms is 

generally activate throughout the flow space.  For the square it is only significant in the 

separated regions and wake areas. 

6.3.3 Schemes to improve the accuracy of the SST-SAS model for the 

present cases 

There a number of observations that can be made for the SST and SST-SAS results for 

the staggered tube bank and the square in cross flow.  These include: 
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1. The SST-SAS shows decreased accuracy relative the SST model on the upstream 

impinging face of the staggered tube bank and the rear face of the square in cross 

flow. 

2. In both of these locations the SST-SAS model over corrects the SST solution. 

3. The SST-SAS model shows an improvement on the side face of both objects. 

One conclusion from these observations is that the accuracy of the local Nusselt numbers 

might be improved by reducing the impact of the SAS modifications at locations where 

the SST-SAS model provides worse results than the SST model.  By dialing-back the 

QSAS term in this area it is hoped that the accuracy would be improved while not losing 

the improvements in accuracy along the sides of the object. 

Reviewing the SST-SAS specific dissipation transport equation, the production term can 

be written without the modification for the gradient terms as  

𝑃𝑃𝜔𝜔 =  𝛼𝛼𝛼𝛼𝑆𝑆2 + 𝜂𝜂2𝜅𝜅𝜅𝜅𝑆𝑆2 �
𝐿𝐿
𝐿𝐿𝑣𝑣𝑣𝑣

�
2

 (72) 

The production of the specific dissipation can also be rewritten in terms of the production 

to the turbulent kinetic energy based on the relation 𝑃𝑃𝑘𝑘 = 𝜇𝜇𝑡𝑡𝑆𝑆2 

𝑃𝑃𝜔𝜔 =  𝛼𝛼𝛼𝛼 �
𝑃𝑃𝑘𝑘
𝜇𝜇𝑡𝑡
� + 𝜂𝜂2𝜅𝜅𝜅𝜅 �

𝑃𝑃𝑘𝑘
𝜇𝜇𝑡𝑡
� �

𝐿𝐿
𝐿𝐿𝑣𝑣𝑣𝑣

�
2

 (73) 

As noted in item 1 in the list above, the accuracy of the SST-SAS model is noticeably 

poorer at stagnation points on the object where the QSAS term is activated.  Rewriting 
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Equation (72) to include the 𝑃𝑃𝑘𝑘  term in equation (73) allows the use of alternate 

expressions for 𝑃𝑃𝑘𝑘 to limit excessive production at stagnation points that have been 

developed previously. 

There are two well-known methods to modify 𝑃𝑃𝑘𝑘.  These are the Kato-Launder 

modification [45], shown in Equation (74) and production limiter [44] shown in Equation 

(75) .  These modifications can be used separately or together as show in Equation (76).  

Both modifications have been used together for the SST and the PANS-SST models used 

in this study.  In addition, they have been used for the non-QSAS terms of the SST-SAS 

model.  A value for Clim of 10 is typically used. 

𝑃𝑃�𝑘𝑘 =  𝜇𝜇𝑡𝑡Ω𝑆𝑆 (74) 

𝑃𝑃�𝑘𝑘 = min(𝜇𝜇𝑡𝑡𝑆𝑆2,𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽∗𝑘𝑘𝑘𝑘)   (75) 

𝑃𝑃�𝑘𝑘 =  min (𝜇𝜇𝑡𝑡Ω𝑆𝑆,𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝛽𝛽∗𝑘𝑘𝑘𝑘) (76) 

These modifications have been shown to prevent the excessive turbulence production 

(and heat transfer) at a stagnation point.  Reviewing Equation (73), it is clear that a 

reasonable approach for reducing the QSAS term at stagnations points would be to 

introduce the Kato Launder and production limiter into the QSAS term as shown in 

Equation (77). 

 



www.manaraa.com

 

133 

𝑄𝑄𝑆𝑆𝑆𝑆𝑆𝑆 = max �𝜌𝜌𝜂𝜂2𝜅𝜅 �
𝑃𝑃�𝑘𝑘
𝜇𝜇𝑡𝑡
� �

𝐿𝐿
𝐿𝐿𝜈𝜈𝜈𝜈

�
2

− 𝐶𝐶
2𝜌𝜌𝜌𝜌
𝜎𝜎Φ

max�
1
𝜔𝜔2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

,
1

  𝑘𝑘2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�  , 0� 

(77) 

This would be an improvement of the SST-SAS model that is dependent on field 

variables and does not modify the model coefficients.  The intent of the modification is to 

improve the accuracy of the SST-SAS model where separated flow has occurred and the 

flow is impinging on a surface.  This condition was found on the upstream surface of the 

tube in the staggered tube bank as well as the rear of the square in cross flow. 

6.3.4 Results of improvement 

Both geometric cases were run with the Kato-Launder modification and the Kato-

Launder modification with the production limiter. These will be referred to as the KL and 

KL-PL modifications, respectively.  A modest improvement is found with the KL 

modification on the rear face of the square in cross flow as shown in Figure 6-12.  A 

smaller improvement is found near the rear of the tube in the staggered tube bank as 

shown in Figure 6-11 for the KL-PL variant.  The mean Nusselt number results by side of 

the object are provided for the two proposed modifications in Table 6-2 for the staggered 

tube bank and in Table 6-3 for the square in cross flow. 
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Figure 6-11  Impact of improvements to the SST-SAS model due to addition of Kato-

Launder and production limiters and QSAS term. 
 

Table 6-2  Local Nusselt Number statistics of improved SAS variants 
 Nusselt Number % Error from experiment 

Model All Front Sides Back All Front Sides Back 

Exp/ error 222.4 306.3 207.5 178.8 +/- 3% +/- 3% +/- 3% +/- 5% 

SST 234.9 330.1 243.6 143.5 5.6% 7.8% 17% -20% 
SST-SAS 207.6 277.1 211.1 145.7 -6.7% -9.5% 1.7% -19% 

SST-SAS-KL 208.8 278.3 212.3 146.9 -6.1% -9.1% 2.3% -18% 
SST-SAS-KL-PL 210.1 278.8 213.3 149.5 -5.6% -9.0% 2.8% -16% 



www.manaraa.com

 

135 

 
Figure 6-12  Results of baseline models and improved SST-SAS model for Local Nusselt 

number for the square in cross flow 

 

Table 6-3  Mean results of baseline models and improved SST-SAS model for square in 
cross flow 

Case 
Nusselt Number Error 
All Front Sides Back All Front Sides Back 

Experiment 97.9 87.0 91.6 121.0 5.0% 5.0% 5.0% 5.0% 

SST 90.6 86.6 82.9 110.2 -7.5% -0.5% -9.6% -8.9% 

SST-SAS 83.8 86.7 73.8 101.1 -14.4% -0.4% -19.5% -16.5% 

SST-SAS-KL 85.3 86.8 75.2 104.1 -12.9% -0.3% -17.9% -14.0% 

SST-SAS-KL-PL 84.6 86.7 74.6 102.5 -13.6% -0.4% -18.6% -15.3% 

For the staggered tube bank the local Nusselt numbers for the KL-PL modification 

showed the most notable improvement near 140° from the stagnation point.  Elsewhere 

the results are similar to the baseline SST-SAS model in shape.  Reviewing the overall 
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mean Nusselt number values in the summary table, the change from the improvement is 

on the order of ~1% or less except for the rear.  On the rear portion of the tube the KL-PL 

modification showed an increase in the mean Nusselt number from 145.7 to 149.5, a 

3.4% percent improvement in the accuracy in this area relative to the experimental data.  

The KL modification also saw an improvement but the change was only 2%.  Overall, to 

the mean and local Nusselt number changes were not significant. 

For the square in cross flow, the impact is not dramatic but they are more significant than 

the results from the staggered tube bank.  Notably, the KL modification did have a 

modest impact on the local Nusselt numbers at the rear of the square.  Specifically, the 

mean Nusselt number increased from 101.1 for the baseline SST-SAS model to 104.1 for 

the KL variation.  The experimental value in this location is 121.0.  The KL variation 

shows a small improvement on the sides, decreasing the mean error for those surfaces 

from -19.5% to -17.9, a change of 1.6%.  One unfortunate result from this analysis is that 

while the Kato-Launder modification alone showed a benefit on the rear surface of the 

square, the improvement (however small) for the staggered tube bank was found for the 

combined Kato-Launder and production limiter case.  This lessens the value of this 

improvement. 

Another observation from the results on the rear face of the square in cross flow is that 

none of the changes shows a positive impact of the shape of the profile on the rear face.  

The same downward profile is found for all cases while the experimental data is 
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essentially flat.  Finally, neither of the modifications had a negative impact on the 

accuracy of the Nusselt numbers relative to the baseline SST-SAS model. 

The QSAS profiles for the staggered tube bank and square in cross flow are shown in 

Figure 6-13 and Figure 6-14 for the three model variations.  When reviewing this data, it 

is important to bear in mind that the values plotted are the source terms for the specific 

dissipation transport equation.  As such, convection and diffusion will spread the QSAS 

production beyond the local area. While the QSAS term was reduced in the expected areas, 

the reduction was too small to significantly impact the solution results as already 

discussed.   

On the upstream face of the staggered tube bank at 2y/L=0, (Figure 6-13c), the sides at 

2x/L=0 and (Figure 6-13a) and at 2x/L=0.733 (Figure 6-13b), both the KL and KL-PL 

provide a reduction in the QSAS term.  In the rear section (Figure 6-13d), the profiles are 

the same as the baseline model.   
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Figure 6-13  Impact of alternate production methods on QSAS term for staggered tube 

bank at 2x/L=0 (a), 2x/L=0.733, 2y/L=0 upstream (c), 2y/L=0 downstream (d)  

The reduction in the QSAS term does generally occur on the front face of the tube where 

the SAS modification over corrects the SST model.  As such, it would be expected to 

improve the accuracy of the local Nusselt number.  However, the magnitude for the 

reduction is apparently too small to impact the Nusselt number results in this area as 

shown in Figure 6-11. 

The QSAS terms for the square in cross flow are similar to the staggered tube bank in that 

there are only small changes to this term for the KL and KL-PL variants.  The QSAS term 

is two orders of magnitude lower upstream of the square along the y/D=0 line (c) than at 
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the other locations.  At x/D = 0 (Figure 6-14a)and x/D = 0.5 (Figure 6-14b) both the KL 

and KL-PL variants are actually larger the than the baseline QSAS value.  At y/D = 0 

(Figure 6-14d) on the downstream side of the square, KL variants is slightly lower than 

the baseline and the KL-PL case. 

 
Figure 6-14  Impact of alternate production terms on QSAS terms for square in cross flow 

at x/D=0 (a), x/D=0.5 (b), y/D= 0 upstream (c), y/D=0, downstream (d) 

A sample of the velocity, effective thermal conductivity and Reynolds stresses for these 

cases for the staggered tube bank and the square in cross flow are shown in Figure 6-15 

through Figure 6-18.  Review of the profiles does not show much variation in the profiles 

for the three SAS models. 
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Figure 6-15  Profiles at x=0 in staggered tube bank for SAS improvement with Kato-Launder and Kato-Launder/ Production Limiter;  

non dimensional u-velocity (a), non-dimensional v-velocity (b), effective thermal conductivity (c) Reynolds stresses 𝑢𝑢′𝑢𝑢′�����/V² (d), 
𝑣𝑣′𝑣𝑣′�����/V² (e), 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Figure 6-16  Profiles at y=0 in staggered tube bank for SAS improvement with Kato-Launder and Kato-Launder/ Production Limiter;  non 
dimensional u-velocity (a), non-dimensional v-velocity (b), effective thermal conductivity (c) Reynolds stresses 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), 𝑢𝑢′𝑣𝑣′�����/V² (f) 
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Figure 6-17  Profiles at x=0 for Velocity, effective thermal conductivity and Reynolds stresses for square in cross flow for SAS 
improvement with Kato-Launder and Kato-Launder/ Production Limiter Modification; u-velocity(a), v-velocity (b), effective thermal 

conductivity (c), normalized  Reynolds stresses 𝑢𝑢′𝑢𝑢′�����/V² (d), 𝑣𝑣′𝑣𝑣′�����/V² (e), and 𝑢𝑢′𝑣𝑣′�����/V² (f) 



www.manaraa.com

 

 

143 

 
Figure 6-18 Profiles at y=0 for Velocity, effective thermal conductivity and Reynolds stresses for square in cross flow for SAS 

improvement with Kato-Launder and Kato-Launder/ Production Limiter Modification; u-velocity(a), effective thermal conductivity 
(b), normalized  Reynolds stresses 𝑢𝑢′𝑢𝑢′�����/V² (c), 𝑣𝑣′𝑣𝑣′�����/V² (d) 
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The only variation of significance is the reduction of the effective thermal conductivity 

for both the KL and KL-PL modifications behind that square as shown in Figure 6-18b.  

This reduction would indicate an increase is the resolved turbulent energy in this area 

despite the fact that the QSAS terms was reduced in this area.  The reason for this change 

is not readily apparent.  The slight changes in the Reynolds stresses downstream of the 

square shown in Figure 6-18c and Figure 6-18d are not considered to be significant. 

6.4 Conclusions for attempted improvement to the SST-SAS model 

In this study, the SAS modification of the SST turbulence model was found to increase 

the accuracy of the CFD prediction relative to the experimental value is some areas while 

causing an increase in the errors in others.  The specification locations where the SST- 

SAS model was less accurate than the SST model are at the stagnation points in the front 

face of the tube and the rear of the square in cross flow.  The novel improvement of the 

SAS model presented here was intended to reduce the QSAS term in areas where it is 

activated by using existing methods to reduce the production term at the stagnation point.  

While the reduction of the local QSAS values was found, the modifications showed limited 

improvement for the cases considered in this study. 

Despite the limited success found in this study, further modifications the SAS terms may 

enable the KL-PL or KL modification be more effective.  Alternate approaches to 

improving this model might include adjusting the model coefficients, including the FSAS 

term used in the earlier version of the model that more directly controlled the magnitude 
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of the SAS modification.  Adjustments limits to the von Karman length scale as shown in 

Equation (69) could also be considered.  Namely, an alternate definition of this length 

scale could be pursued in the near wall region to provide better heat transfer performance 

while not deviating significantly correct high wave number damping.   

One benefit from this work is to document an approach that did not work to guide future 

researchers to pursue more fruitful improvements to the Scale Adaptive Simulation 

method. 
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7 CONCLUSION 

The first part of this study evaluated six CFD models against two sets of experimental 

data available in the literature.  It was found that the more sophisticated models did not 

necessarily provide better results.  In particular, the level of resolved turbulence did not 

correlate directly to the accuracy of the mean and local Nusselt numbers.  It is clear that 

the degree of resolved turbulence determined by the model must also work effectively 

with the turbulent viscosity model.  For the industrial user, this comparative study shows 

that while significant gains are available by simple transitioning from a SRANS to a 

URANS solution, there can be significant variability in the models. 

The SST-SAS and PANS-SST both attempt to reduce the modeled turbulence by 

increasing the local specific dissipation.  Despite the elegance of the baseline SST-SAS 

model, it does not provide an overall improvement compared the baseline SST model.  

The PANS-SST model was cumbersome to implement but was found to provide an 

excellent improvement over the SST model. 

The attempt to improve the SST-SAS model was only marginally successful.  While the 

results for the staggered tube bank and square in crossflow did show an opportunity for 

improvement, the benefits of the modification were marginal.  Regardless, these results 

may provide future researchers an opportunity to find complementary changes to these 

improvements that will make them more effective. 
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A. IMPLEMENTATION OF TURBULENCE MODELS IN FLUENT 

Custom turbulence models can be implemented in to the commercial CFD software 

Fluent through the use of User Define Functions (UDFs) [87].  The parameters of the 

turbulence model (𝑘𝑘 and 𝜔𝜔 for example) are scalars that behave in a fluid as any chemical 

species would.   

For a generic scalar, φ, the transport equation can be written as:   

𝜕𝜕(𝜌𝜌ϕ)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝜌𝜌𝑢𝑢𝑗𝑗ϕ)
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝑆𝑆𝜙𝜙 +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝐷𝐷𝜙𝜙
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� (78) 

Fluent will handle the transient, convection and diffusion terms automatically.  The user 

supplies the source term, Sφ and the diffusion coefficient, Dφ which are supplied to the 

code through subroutines in the C programming language.  The first derivative of the 

source term relative to the scalar �𝑆𝑆𝜙𝜙
𝜕𝜕𝜕𝜕
� is provided as well.  If the source term is non-

linear relative to φ, as is common for equations for k and ω, special care must be taken to 

prevent divergence of the solution [99], [30]. 

The number of scalars used for the model is selected from the interface and the user must 

keep track of the scalar number when performing calculations.  For all the models created 

in the resent study, Scalar 0 was the turbulent kinetic energy, 𝑘𝑘 and Scalar 1 was the 

specific dissipation, 𝜔𝜔.  
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For the source term, a function is written under the function call: 

DEFINE_SOURCE(Source_Identifier, c, t, dS, eqn) 

The “Source_Identifier” is the label given to a source UDF and it will appear in the 

Fluent interface under that name when the code is compiled.  The variable “c” is all the 

cells of the domain and “t” is a data structure type that allows access to all the cells in a 

domain.  “dS” is the first derivative of the source term relative to the scalar parameter.  

Finally, the value for the source term itself is returned by the function.  No looping is 

required to calculate the values as the function is called for each cell in the domain.  In 

the user interface, the source term for each scalar is selected under the Cell Zone 

Conditions option.  The scalar values for the are addressed as C_UDSI(c, t, TKE) where 

TKE was defined as 0 and C_UDSI(c, t, OMG) where OMG is defined a 1.  Other 

parameters are available including the fluid density, C_R(c, t) or the local turbulent 

viscosity, C_MU_T(c, t). 

The diffusion coefficient 𝐷𝐷𝜙𝜙 is defined with  

DEFINE_DIFFUSIVITY(ScalarEquation, c, t, ScalarNumber)  

and is selected under the materials definition in the interface. 

Initial conditions as well as flow inlet conditions can be set directly for 𝑘𝑘 and 𝜔𝜔.  The 

wall boundary condition is set directly to zero for k (Equation (23) while an equation for 
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the 𝜔𝜔 (Equation (22) is selected in the Graphical User Interface (GUI) with the function 

DEFINE_PROFILE.  This equation is also provided in the source code. 

Limits are required on 𝑘𝑘 and 𝜔𝜔 to prevent errant values from causing divergence.  The 

limits for these values are 10-8 < 𝑘𝑘< 100 and 100 <  𝜔𝜔 < 108.  The limits are applied at the 

end of every iteration with DEFINE_ADJUST which can be selected in the GUI.  It was 

found however that divergence still occurred from time to time so these limits were also 

included into every function, i.e. source and diffusion coefficients functions.  The 

resulting the solution became very stable. 

Source code for Fluent UDFs 

Source Code for Fluent UDF 
 
#include "udf.h" 
#include "mem.h" 
/* #include "math.h" */ 
#include "sg_udms.h" 
#include "global.h" 
#include "sg.h" 
 
/* User-defined constants */ 
#define ALPHA  0.55555555555555555 
#define ALPHA_INF 0.52 
#define A_1 0.31 
#define ALPHA_STAR 1.0 
#define BETA  0.075 
#define BETA_I 0.0708 
#define SIGMA  0.5 
#define BETA_STAR_INF 0.09 
#define BETA_STAR 0.09 
#define R_BETA 8.0 
#define SIGMAStart  0.5 
#define SIGMA_D0  0.125 
#define VONKARMON_K 0.41 
#define VONKARMON_K_SQ  0.1681 
#define BETA_I1  0.075 
#define BETA_I2  0.0828 
#define C_MU 0.09 
#define SIGMA_K1  1.176 
#define SIGMA_OMEGA1  2.0 
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#define SIGMA_K2  1.0 
#define CLIM 10 
#define SIGMA_OMEGA2 1.168 
#define ETA_2 3.51 
#define SIGMA_PHI 0.666666667 
#define C_SAS 2.0 
#define C_S_SAS 0.11 
#define MIN_TKE 1E-8 
#define MAX_TKE 100 
#define MIN_OMG 1E+2 
#define MAX_OMG 1E+8 
/*#define F_OMEGA 1.0 */ 
#define WDD_UDM 10 
/*#define MIN(a,b) (((a)<(b))?(a):(b)) */ 
 
/* User-defined scalars */ 
enum 
 
  { 
   TKE, 
   OMG, 
   N_REQUIRED_UDS 
 }; 
 
void cpySVartoUDM(Domain *domain, Svar sv, int udm) 
{ 
  size_t realsize = sizeof(real); 
  real  *svpointr = NULL; 
  real  *udmpoint = NULL; 
  Thread  *thread = NULL; 
  Domain  *supdom = DOMAIN_SUPER_DOMAIN(domain); 
  if (NULLP(supdom)) 
    { 
      supdom = domain; 
    } 
 
  if (n_udm <= udm) 
    { 
      Error("cpySVartoUDM(): too few User Defined Memory Locations.\n" 
            "Location %d was requested, but there are only %d 
allocated.\n", 
                      udm,                              n_udm); 
    } 
 
  thread_loop_c(thread, domain) 
    { 
      Thread *supthr = THREAD_SUPER_THREAD(thread); 
      if (NULLP(supthr)) 
        { 
          supthr = thread; 
        } 
 
      if (NNULLP(svpointr = THREAD_STORAGE(thread, sv)) && 



www.manaraa.com

 

158 

         (NNULLP(THREAD_STORAGE(supthr, SV_UDM_I)) ? 
          NNULLP(udmpoint = T_STORAGE_R_XV(supthr, SV_UDM_I, udm)) : 
FALSE)) 
        { 
          int numbytes = realsize * thread->nelements; 
          memcpy(udmpoint, svpointr, numbytes); 
        } 
    } 
} 
 
DEFINE_INIT(wall_dist,domain)  /* use this for new cases */ 
{ 
#if !RP_HOST 
/* works in serial or node processes */ 
/* solution data is not on host process anyway */ 
 Alloc_Storage_Vars(domain,SV_RTMP_0,SV_NULL); 
 Calc_Cell_Wall_Distance_New(domain,SV_RTMP_0); 
 cpySVartoUDM(domain,SV_RTMP_0,WDD_UDM); 
 Free_Storage_Vars(domain,SV_RTMP_0, SV_NULL); 
 cpySVartoUDM(domain,1,3); 
#endif 
} 
 
DEFINE_ON_DEMAND(StoreCellWallDistance) 
{ 
#if !RP_HOST 
 Domain *d = Get_Domain(1); 
 Alloc_Storage_Vars(d,SV_RTMP_0,SV_NULL); 
 Calc_Cell_Wall_Distance_New(d,SV_RTMP_0); 
 cpySVartoUDM(d,SV_RTMP_0,WDD_UDM); 
 Free_Storage_Vars(d,SV_RTMP_0,SV_NULL); 
#endif 
} 
/* **************************Diffusivity term of TKE and 
OMG********************************/ 
DEFINE_DIFFUSIVITY(kw_diff,c,t,eqn) 
{ 
 double diff; /* define the diffusion coeffcient  */ 
 double D_w_plus, Phi_1_part1, Phi_1_part2, Phi_1, F1, Sigma_k, 
Sigma_omega, walldist; 
 double Phi_1_4, f_k, f_omega; 
 
 /*  BSL k-w diffusion equations   */ 
 
C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
f_k =  C_UDMI(c, t, 3); 
/* f_omega = 1.0/f_k; */ 
 
f_omega = 1.0; 
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 walldist = C_UDMI(c, t, WDD_UDM); 
 
 if (NULL == T_STORAGE_R_NV(t,SV_UDSI_G(TKE)) || 
     NULL == T_STORAGE_R_NV(t,SV_UDSI_G(OMG))) 
    { 
  *&  /* Message("Can't calculate diffusivity just yet...\n"); */ 
    diff = C_MU_T(c, t); 
  return diff; 
 } 
 
  D_w_plus = MAX(2.0*C_R(c, t)/(SIGMA_OMEGA2*C_UDSI(c, t, 
OMG))*NV_DOT(C_UDSI_G(c, t, TKE), C_UDSI_G(c, t, OMG)), 1.0E-10); 
 
  Phi_1_part1 = MAX(pow(C_UDSI(c, t, TKE), 0.5)/(0.09*C_UDSI(c, t, 
OMG)*walldist), 500.0*C_MU_L(c, t)/(C_R(c, 
t)*walldist*walldist*C_UDSI(c, t, OMG))); 
 
  Phi_1_part2 = 4.0*C_R(c, t)*C_UDSI(c, t, 
TKE)/(SIGMA_OMEGA2*D_w_plus*walldist*walldist); 
 
  Phi_1 = MIN(Phi_1_part1, Phi_1_part2); 
 
   Phi_1_4 = pow(Phi_1, 4.0); 
 
  F1 = tanh(Phi_1_4); 
 
    C_UDMI(c, t, 1) = F1; 
 
  Sigma_k = 1.0/(F1/SIGMA_K1 + (1.0 - F1)/SIGMA_K2); 
 
  Sigma_omega = 1.0/(F1/SIGMA_OMEGA1 + (1.0 - F1)/SIGMA_OMEGA2); 
 
     switch (eqn) 
         { 
          case TKE: 
                   diff=C_MU_L(c,t) + 
(f_omega/f_k)*(C_MU_T(c,t)/Sigma_k);  /* EQN 4.66 Fluent Theory Guide 
*/ 
                   break; 
          case OMG: 
                   diff=C_MU_L(c,t) + 
(f_omega/f_k)*(C_MU_T(c,t)/Sigma_omega);  /* EQN 4.66 Fluent Theory 
Guide */ 
                   break; 
          default: 
                   diff=C_MU_T(c,t)+C_MU_L(c,t); 
         } 
     return diff; 
 } 
 
 /* **************************Effecitve Diffusitity TKE and 
OMG********************************/ 
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DEFINE_TURBULENT_VISCOSITY(user_mu_t,c,t) 
 { 
  double mu_t, Phi_2, F2, walldist; 
  double Term1, Term2; 
 
  walldist = C_UDMI(c, t, WDD_UDM); 
 
 C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
 C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
 C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
 C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
  Term1 = 2.0*pow(C_UDSI(c, t, TKE), 0.5)/(0.09*C_UDSI(c, t, 
OMG)*walldist); 
  Term2 = 500.0*C_MU_L(c, t)/(C_R(c, 
t)*walldist*walldist*C_UDSI(c, t, OMG)); 
 
 
  Phi_2 = MAX(Term1, Term2); 
 
  F2 = tanh(Phi_2*Phi_2); 
 
  C_UDMI(c, t, 2) = F2; 
 
/*  DUDY = C_DUDX(c, t); 
  DVDX = C_DVDX(c, t); 
  DUDX = C_DUDX(c, t); 
  DVDY = C_DVDY(c, t); 
 
  Vorticity[0][0] =  0.0; 
  Vorticity[0][1] =  0.5*(DUDY - DVDX); 
  Vorticity[1][0] =  0.5*(DVDX - DUDY); 
     Vorticity[1][1] =  0.0; 
 
    VorticityMag = pow(2*(Vorticity[0][1]*Vorticity[0][1] + 
Vorticity[1][0]*Vorticity[1][0]), 0.5);  */ 
 
/*  mu_t = C_R(c, t)*C_K(c, t)/C_O(c, t)*(1.0/MAX(1.0/ALPHA_STAR, 
Strainrate_Mag(c, t)*F2/(A_1*C_O(c, t))));  */ 
 
 
 
/* C_UDMI(c, t, 4) =  Strainrate_Mag(c, t)*F2/(A_1*C_UDSI(c, t, 
OMG)); 
 C_UDMI(c, t, 5) =  VorticityMag*F2/(A_1*C_UDSI(c, t, OMG));  */ 
 
  mu_t = C_R(c, t)*C_UDSI(c, t, TKE)/C_UDSI(c, t, 
OMG)*(1.0/MAX(1.0/ALPHA_STAR, Strainrate_Mag(c, t)*F2/(A_1*C_UDSI(c, t, 
OMG)))); 
 
  return mu_t; 
 
 } 
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/* *********************************Source term of 
TKE************************************/ 
 
DEFINE_SOURCE(k_source,c,t,dS,eqn) 
{ 
double P_k, Y_k, Beta_Star, Beta_Star_i, dPk_dk, dYk_dk; 
double P_k_Tilda, StrainMag, StrainMagSquared, F_2; 
double S_p; 
 
 C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
 C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
 C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
 C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
 StrainMag = Strainrate_Mag(c,t); 
 
 StrainMagSquared = SQR(Strainrate_Mag(c,t)); 
 
 F_2 = C_UDMI(c, t, 2); 
 
/* Re_t = C_R(c, t)*C_UDSI(c, t, TKE)/(C_MU_L(c, t)*C_UDSI(c, t, 
OMG)); */ 
 
 P_k = C_MU_T(c,t)*StrainMagSquared; 
 
 Beta_Star_i = BETA_STAR_INF;  /* No correction for low turbulence 
EQN 4.81 Fluent Theory Guide */ 
 
 Beta_Star = Beta_Star_i; /* No correction for compressible 
flow EQN 4.81 Fluent Theory Guide */ 
 
/* Beta_I_star = BETA_STAR_INF*(4.0/15.0 + pow(Re_t/R_BETA, 
4.0))/(1.0 + pow(Re_t/R_BETA, 4.0));  */ 
 
    Y_k = C_R(c, t)*Beta_Star*C_UDSI(c, t, OMG)*C_UDSI(c, t, TKE);  /* 
EQN 4.77 Fluent Theory Guide */ 
    Y_k = C_R(c, t)*Beta_Star*C_O(c, t)*C_UDSI(c, t, TKE);  /* EQN 4.77 
Fluent Theory Guide */ 
 
 P_k_Tilda = MIN(P_k, 10*Y_k);  /*  Production limit for 
stagnation regions 
         from Menter, 
Kuntz, and Langtry "Ten Years of Industrial Experience with the SST 
Turbulence Model */ 
 
 dPk_dk = 0.0;  /*  Linearized Derivative for P_k Portion */ 
 
 dYk_dk =  Y_k/C_UDSI(c, t, TKE); /* Linearized Derivative for S_k 
Portion */ 
 
    S_p = -dYk_dk; 
 
/* if(k_lim/C_UDSI(c, t, TKE) > 10.0) dS[eqn] = 20.0*dS[eqn];  */ 
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/* C_UDMI(c, t, 4) = k_lim; 
   C_UDMI(c, t, 5) = dPk_dk - dYk_dk;  */ 
 
   dS[eqn] = S_p; 
 
return P_k_Tilda - Y_k; 
} 
 
/* *********************************Source term of TKE - Production 
Limiter and Kato Launder ************************************/ 
DEFINE_SOURCE(KL_k_source,c,t,dS,eqn) 
{ 
double P_k, Y_k, Re_t, Beta_Star, Beta_Star_i, dPk_dk, dYk_dk; 
double P_k_Tilda, StrainMag, F_2; 
double Vort21, Vort12, Vort31, Vort13, Vort32, Vort23, VortMag; 
double S_p; 
 
 C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
 C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
 C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
 C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
 StrainMag = Strainrate_Mag(c,t); 
 
 Vort21 = 0.5*(C_DVDX(c, t) - C_DUDY(c, t)); 
 Vort12 = -Vort21; 
 
 Vort31 = 0.5*(C_DWDX(c, t) - C_DUDZ(c, t)); 
 Vort13 = -Vort31; 
 
 Vort32 = 0.5*(C_DWDY(c, t) - C_DVDZ(c, t)); 
 Vort23 = -Vort32; 
 
 VortMag = pow(2*(Vort21*Vort21 + Vort12*Vort12 + Vort31*Vort31 + 
Vort13*Vort13 + Vort23*Vort23 + Vort32*Vort32), 0.5); 
 
 /* C_UDMI(c, t, 7) = VortMag;  */ 
 
 F_2 = C_UDMI(c, t, 2); 
 
 Re_t = C_R(c, t)*C_UDSI(c, t, TKE)/(C_MU_L(c, t)*C_UDSI(c, t, 
OMG)); 
 
 P_k = C_MU_T(c,t)*StrainMag*VortMag; 
 
 Beta_Star_i = BETA_STAR_INF;  /* No correction for low turbulence 
EQN 4.81 Fluent Theory Guide */ 
 
 Beta_Star = Beta_Star_i; /* No correction for compressible 
flow EQN 4.81 Fluent Theory Guide */ 
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       Y_k = C_R(c, t)*Beta_Star*C_UDSI(c, t, OMG)*C_UDSI(c, t, TKE);  
/* EQN 4.77 Fluent Theory Guide */ 
 
 P_k_Tilda = MIN(P_k, CLIM*Y_k);  /*  Production limit for 
stagnation regions 
         from Menter, 
Kuntz, and Langtry "Ten Years of Industrial Experience with the SST 
Turbulence Model */ 
 
 dPk_dk = 0.0;  /*  Linearized Derivative for P_k Portion */ 
 
 dYk_dk =  MAX(0, Y_k/C_UDSI(c, t, TKE));  /* Linearized 
Derivative for S_k Portion, prevents negative source derivative */ 
 
       S_p = -dYk_dk; 
 
    S_p = MIN(S_p, 0); 
 
   dS[eqn] = S_p; 
 
return P_k_Tilda - Y_k; 
} 
 
 
/**********************************Source term of 
OMG************************************/ 
DEFINE_SOURCE(OMG_source, c, t, dS, eqn) 
 { 
 double P_k, alpha, P_w, Y_w, Y_k, beta; 
  double Beta_i, D_w, alpha_inf, F1; 
  double alpha_inf1, alpha_inf2, alpha_star; 
  double P_k_Tilda; 
  double omega_lim; 
  double Beta_Star, Beta_Star_i; 
  double S_p, S_star, S_c, Source, relaxation, f_k, f_omega; 
 
  C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
  C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
  C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
  C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
  f_k = C_UDMI(c, t, 3); 
  /* f_omega = 1.0/f_k; */ 
  f_omega = 1.0; 
 
  Beta_Star_i = BETA_STAR_INF;  /*  No correction for low turbulence 
EQN 4.81 Fluent Theory Guide */ 
 
  Beta_Star = Beta_Star_i; /* No correction for compressible flow 
EQN 4.81 Fluent Theory Guide */ 
 
  P_k = C_MU_T(c,t)*SQR(Strainrate_Mag(c,t)); /* EQN 4.74 Fluent Theory 
Guide */ 
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  Y_k = C_R(c, t)*Beta_Star*C_UDSI(c, t, OMG)*C_UDSI(c, t, TKE);  /* 
EQN 4.77 Fluent Theory Guide */ 
 
  P_k_Tilda = MIN(P_k, 10*Y_k); 
 
 
  F1 = C_UDMI(c, t, 1); 
 
/*  alpha_inf1 = BETA_I1/BETA_STAR_INF - 
VONKARMON_K_SQ/(SIGMA_OMEGA1*pow(BETA_STAR_INF, 0.5)); 
  alpha_inf2 = BETA_I2/BETA_STAR_INF - 
VONKARMON_K_SQ/(SIGMA_OMEGA2*pow(BETA_STAR_INF, 0.5));  */ 
 
  alpha_inf1 = 5.0/9.0; 
  alpha_inf2 = 0.44; 
 
  alpha_inf = F1*alpha_inf1 + (1.0-F1)*alpha_inf2; 
  alpha_star = 1.0;   /* High Reynolds Number */ 
 
  alpha = alpha_inf; 
 
  P_w = alpha*C_R(c, t)*P_k_Tilda/C_MU_T(c, t);     /* EQN 4.75 Fluent 
Theory Guide */ 
 
  Beta_i = F1*BETA_I1 + (1.0-F1)*BETA_I2; 
 
  beta = Beta_i;  /* No correction for compressible flow EQN 4.89 
Fluent Theory Guide */ 
 
  if (NULL == T_STORAGE_R_NV(t,SV_UDSI_G(TKE)) || NULL == 
T_STORAGE_R_NV(t,SV_UDSI_G(OMG))) 
        {/* Message("Can't calculate D_w just yet...\n"); */ 
        C_UDMI(c, t,  9) = 0.0; 
      D_w = 0.0; 
     } 
     else 
       D_w = (1.0-F1)*(f_omega/f_k)*MAX(2.0*C_R(c, 
t)/(SIGMA_OMEGA2*C_UDSI(c, t, OMG))*NV_DOT(C_UDSI_G(c, t, TKE), 
C_UDSI_G(c, t, OMG)), 1e-10); 
 
/*  Y_w = (1.0/F_OMEGA - 1.0)*Beta_Star*alpha*C_R(c, t)/C_MU_T(c, t) - 
    C_R(c, 
t)*beta*C_UDSI(c,t,OMG)*C_UDSI(c,t,OMG)/f_omega;   */ 
 
 
  Y_w =  (1.0/f_omega - 1.0)*Beta_Star*alpha*C_UDSI(c,t,OMG)*C_R(c, 
t)/C_MU_T(c, t) + 
     C_R(c, t)*beta*C_UDSI(c,t,OMG)*C_UDSI(c,t,OMG)/f_omega; 
 
  Source = P_w - Y_w + D_w; 
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  S_p = -(D_w + 2.0*Y_w)/C_UDSI(c, t, OMG); 
 
  S_c = P_w - 3.0*Y_w + 2.0*D_w; 
 
  omega_lim = -S_c/S_p; 
 
  S_star = P_w - Y_w + D_w; 
 
  dS[eqn] = -S_star/(omega_lim - C_UDSI(c, t, OMG)); 
 
 
 
/*  dS[eqn] = -(D_w + 2.0*Y_w)/C_UDSI(c, t, OMG);  */ 
 
 relaxation = 1.0; 
 
 C_UDMI(c, t, 8) = S_p; 
/* C_UDMI(c, t, 9) = Source;  */ 
 
 dS[eqn] = S_p; 
 
 return Source; 
 } 
 /**********************************Source term of OMG for Kato Launder 
and Production Limited ************************************/ 
 DEFINE_SOURCE(KL_OMG_source, c, t, dS, eqn) 
  { 
  double P_k, alpha, P_w, Y_w, Y_k, beta; 
   double alpha_inf, F1, Beta_i, D_w; 
   double alpha_inf1, alpha_inf2, alpha_star; 
   double P_k_Tilda; 
   double Beta_Star, Beta_Star_i; 
   double S_p, Source, f_k, f_omega; 
   double Vort21, Vort12, Vort31, Vort13, Vort32, Vort23, VortMag, 
StrainMag; 
 
 C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
 C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
 C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
 C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
  StrainMag = Strainrate_Mag(c,t); 
 
  Vort21 = 0.5*(C_DVDX(c, t) - C_DUDY(c, t)); 
  Vort12 = -Vort21; 
 
  Vort31 = 0.5*(C_DWDX(c, t) - C_DUDZ(c, t)); 
  Vort13 = -Vort31; 
 
  Vort32 = 0.5*(C_DWDY(c, t) - C_DVDZ(c, t)); 
  Vort23 = -Vort32; 
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  VortMag = pow(2*(Vort21*Vort21 + Vort12*Vort12 + Vort31*Vort31 + 
Vort13*Vort13 + Vort23*Vort23 + Vort32*Vort32), 0.5); 
 
  P_k = C_MU_T(c,t)*StrainMag*VortMag; 
 
   /* P_k = C_MU_T(c,t)*SQR(Strainrate_Mag(c,t));  EQN 4.74 Fluent 
Theory Guide */ 
 
   f_k = C_UDMI(c, t, 3); 
   /*  f_omega = 1.0/f_k; */ 
   f_omega = 1.0; 
 
   Beta_Star_i = BETA_STAR_INF;  /*  No correction for low turbulence 
EQN 4.81 Fluent Theory Guide */ 
 
   Beta_Star = Beta_Star_i; /* No correction for compressible flow 
EQN 4.81 Fluent Theory Guide */ 
 
 
 
   Y_k = C_R(c, t)*BETA_STAR_INF*C_UDSI(c, t, OMG)*C_UDSI(c, t, TKE);  
/* EQN 4.77 Fluent Theory Guide */ 
 
   P_k_Tilda = MIN(P_k, CLIM*Y_k); 
 
 
   F1 = C_UDMI(c, t, 1); 
 
 /*  alpha_inf1 = BETA_I1/BETA_STAR_INF - 
VONKARMON_K_SQ/(SIGMA_OMEGA1*pow(BETA_STAR_INF, 0.5)); 
   alpha_inf2 = BETA_I2/BETA_STAR_INF - 
VONKARMON_K_SQ/(SIGMA_OMEGA2*pow(BETA_STAR_INF, 0.5));  */ 
 
   alpha_inf1 = 5.0/9.0; 
   alpha_inf2 = 0.44; 
 
   alpha_inf = F1*alpha_inf1 + (1.0-F1)*alpha_inf2; 
   alpha_star = 1.0;   /* High Reynolds Number */ 
 
   alpha = alpha_inf; 
 
   P_w = alpha*C_R(c, t)*P_k_Tilda/C_MU_T(c, t);     /* EQN 4.75 
Fluent Theory Guide */ 
 
   Beta_i = F1*BETA_I1 + (1.0-F1)*BETA_I2; 
 
   beta = Beta_i;  /* No correction for compressible flow EQN 4.89 
Fluent Theory Guide */ 
 
   Y_w =  (1.0/f_omega - 
1.0)*Beta_Star*alpha*C_UDSI(c,t,OMG)*C_UDSI(c,t,TKE)*C_R(c, 
t)/C_MU_T(c, t) + 
      C_R(c, t)*beta*C_UDSI(c,t,OMG)*C_UDSI(c,t,OMG)/f_omega; 
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   if (NULL == T_STORAGE_R_NV(t,SV_UDSI_G(TKE)) || NULL == 
T_STORAGE_R_NV(t,SV_UDSI_G(OMG))) 
         {/* Message("Can't calculate D_w just yet...\n"); */ 
         C_UDMI(c, t,  9) = 0.0; 
       D_w = 0.0; 
      } 
      else 
        D_w = (1.0-F1)*MAX((f_omega/f_k)*2.0*SIGMA_OMEGA2*C_R(c, 
t)/(C_UDSI(c, t, OMG))*NV_DOT(C_UDSI_G(c, t, TKE), C_UDSI_G(c, t, 
OMG)), 1e-10); 
 
   Source = P_w - Y_w + D_w; 
 
    S_p = MIN(0, -(D_w + 2.0*Y_w)/C_UDSI(c, t, OMG)); 
 
    S_p = MIN(S_p, 0); 
 
/* C_UDMI(c, t, 5) = Source; 
 
 C_UDMI(c, t, 6) = S_p;  */ 
 
    dS[eqn] = S_p; 
 
  return Source; 
 } 
 /**********************************Source term of OMG for SAS with 
Kato Launder and Production Limited 
************************************/ 
 /**********************************Source term Modified for SAS Model 
************************************/ 
 DEFINE_SOURCE(SAS_KL_OMG_source, c, t, dS, eqn) 
   { 
   double P_k, alpha, P_w, Y_w, Y_k, beta; 
    double alpha_inf, F1, Beta_i, D_w; 
    double alpha_inf1, alpha_inf2, alpha_star; 
    double P_k_Tilda, Alt_StrainMagSquared; 
    double Beta_Star, Beta_Star_i; 
    double S_p, Source, f_k, f_omega, Q_SAS, dQ_SAS_dw; 
    double Vort21, Vort12, Vort31, Vort13, Vort32, Vort23, VortMag, 
StrainMag; 
    double d2udx2, d2udy2, d2udz2, d2vdx2, d2vdy2, d2vdz2, d2wdx2, 
d2wdy2, d2wdz2; 
 double Udoubleprime, coerce(); 
 double Q_SAS_Term1, Q_SAS_Term2, VonKarmonLengthScale, 
TurbulentLengthScale; 
 double CellLength, Mod_VonKarmonLengthScale, Omega_Dot, tke_Dot; 
 double max_Ratio, u_terms, v_terms, w_terms; 
 
 max_Ratio = 1000.0; 
 
  C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
  C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
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  C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
  C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
   StrainMag = Strainrate_Mag(c,t); 
 
   Vort21 = 0.5*(C_DVDX(c, t) - C_DUDY(c, t)); 
   Vort12 = -Vort21; 
 
   Vort31 = 0.5*(C_DWDX(c, t) - C_DUDZ(c, t)); 
   Vort13 = -Vort31; 
 
   Vort32 = 0.5*(C_DWDY(c, t) - C_DVDZ(c, t)); 
   Vort23 = -Vort32; 
 
   VortMag = pow(2*(Vort21*Vort21 + Vort12*Vort12 + Vort31*Vort31 + 
Vort13*Vort13 + Vort23*Vort23 + Vort32*Vort32), 0.5); 
 
   P_k = C_MU_T(c,t)*StrainMag*VortMag; 
 
    /* P_k = C_MU_T(c,t)*SQR(Strainrate_Mag(c,t));  EQN 4.74 Fluent 
Theory Guide */ 
 
    f_k = C_UDMI(c, t, 3); 
    /*  f_omega = 1.0/f_k; */ 
    f_omega = 1.0; 
 
    Beta_Star_i = BETA_STAR_INF;  /*  No correction for low turbulence 
EQN 4.81 Fluent Theory Guide */ 
 
    Beta_Star = Beta_Star_i; /* No correction for compressible flow 
EQN 4.81 Fluent Theory Guide */ 
 
    Y_k = C_R(c, t)*BETA_STAR_INF*C_UDSI(c, t, OMG)*C_UDSI(c, t, TKE);  
/* EQN 4.77 Fluent Theory Guide */ 
 
    P_k_Tilda = MIN(P_k, CLIM*Y_k); 
 
 
    F1 = C_UDMI(c, t, 1); 
 
  /*  alpha_inf1 = BETA_I1/BETA_STAR_INF - 
VONKARMON_K_SQ/(SIGMA_OMEGA1*pow(BETA_STAR_INF, 0.5)); 
    alpha_inf2 = BETA_I2/BETA_STAR_INF - 
VONKARMON_K_SQ/(SIGMA_OMEGA2*pow(BETA_STAR_INF, 0.5));  */ 
 
    alpha_inf1 = 5.0/9.0; 
    alpha_inf2 = 0.44; 
 
    alpha_inf = F1*alpha_inf1 + (1.0-F1)*alpha_inf2; 
    alpha_star = 1.0;   /* High Reynolds Number */ 
 
    alpha = alpha_inf; 
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    P_w = alpha*C_R(c, t)*P_k_Tilda/C_MU_T(c, t);     /* EQN 4.75 
Fluent Theory Guide */ 
 
    Beta_i = F1*BETA_I1 + (1.0-F1)*BETA_I2; 
 
    beta = Beta_i;  /* No correction for compressible flow EQN 4.89 
Fluent Theory Guide */ 
 
    Y_w =  (1.0/f_omega - 
1.0)*Beta_Star*alpha*C_UDSI(c,t,OMG)*C_UDSI(c,t,TKE)*C_R(c, 
t)/C_MU_T(c, t) + 
       C_R(c, t)*beta*C_UDSI(c,t,OMG)*C_UDSI(c,t,OMG)/f_omega; 
 
    if (NULL == T_STORAGE_R_NV(t,SV_UDSI_G(TKE)) || NULL == 
T_STORAGE_R_NV(t,SV_UDSI_G(OMG))) 
          {/* Message("Can't calculate D_w just yet...\n"); */ 
          C_UDMI(c, t,  9) = 0.0; 
        D_w = 0.0; 
       } 
       else 
         D_w = (1.0-F1)*MAX((f_omega/f_k)*2.0*SIGMA_OMEGA2*C_R(c, 
t)/(C_UDSI(c, t, OMG))*NV_DOT(C_UDSI_G(c, t, TKE), C_UDSI_G(c, t, 
OMG)), 1e-10); 
 
   d2udx2 = C_UDSI_G(c,t, 3)[0]; 
 d2udy2 = C_UDSI_G(c,t, 4)[1]; 
 d2udz2 = C_UDSI_G(c,t, 5)[2]; 
 
 d2vdx2 = C_UDSI_G(c,t, 6)[0]; 
 d2vdy2 = C_UDSI_G(c,t, 7)[1]; 
 d2vdz2 = C_UDSI_G(c,t, 8)[2]; 
 
 d2wdx2 = C_UDSI_G(c,t, 9)[0]; 
 d2wdy2 = C_UDSI_G(c,t, 10)[1]; 
 d2wdz2 = C_UDSI_G(c,t, 11)[2]; 
 
 u_terms = d2udx2*d2udx2 + d2udy2*d2udy2 + d2udz2*d2udz2 + 
2.0*(d2udy2*d2udx2) + 2.0*(d2udx2*d2udz2) + 2.0*(d2udy2*d2udz2); 
 v_terms = d2vdx2*d2vdx2 + d2vdy2*d2vdy2 + d2vdz2*d2vdz2 + 
2.0*(d2vdy2*d2vdx2) + 2.0*(d2vdx2*d2vdz2) + 2.0*(d2vdy2*d2vdz2); 
 w_terms = d2wdx2*d2wdx2 + d2wdy2*d2wdy2 + d2wdz2*d2wdz2 + 
2.0*(d2wdy2*d2wdx2) + 2.0*(d2wdx2*d2wdz2) + 2.0*(d2wdy2*d2wdz2); 
 
 Udoubleprime = pow(u_terms + v_terms + w_terms, 0.5); 
 
 StrainMag = Strainrate_Mag(c,t); 
 
 VonKarmonLengthScale = VONKARMON_K*StrainMag/Udoubleprime; 
 TurbulentLengthScale = pow(C_UDSI(c,t, 0), 0.5)/(0.5477*C_UDSI(c, 
t, 1)); 
 
 CellLength = pow(C_VOLUME(c, t), 0.33333333333); 
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 Mod_VonKarmonLengthScale = MAX(VonKarmonLengthScale, 
C_S_SAS*CellLength*pow(VONKARMON_K*ETA_2/(beta/C_MU - alpha), 0.5)); 
 
 Alt_StrainMagSquared = P_k_Tilda/C_MU_T(c, t); 
 
 Q_SAS_Term1 = C_R(c, 
t)*ETA_2*VONKARMON_K*VortMag*VortMag*pow(TurbulentLengthScale/Mod_VonKa
rmonLengthScale, 2.0); 
 
 Omega_Dot = NV_DOT(C_UDSI_G(c, t, OMG), C_UDSI_G(c, t, 
OMG))/pow(C_UDSI(c, t, OMG), 2.0); 
 
 tke_Dot = NV_DOT(C_UDSI_G(c, t, TKE), C_UDSI_G(c, t, 
TKE))/pow(C_UDSI(c, t, TKE), 2.0); 
 
 if(Omega_Dot >= tke_Dot){ 
 
  Q_SAS_Term2 = C_SAS*(2.0*C_R(c, t)*C_UDSI(c, t, 
0)/SIGMA_PHI)*Omega_Dot; 
  dQ_SAS_dw = -2.0*(Q_SAS_Term1 - Q_SAS_Term2)/C_UDSI(c, t, 
OMG);  } 
    else { 
     Q_SAS_Term2 = C_SAS*(2.0*C_R(c, t)*C_UDSI(c, t, 
0)/SIGMA_PHI)*tke_Dot; 
  dQ_SAS_dw = -2.0*(Q_SAS_Term1)/C_UDSI(c, t, OMG); 
   } 
 
 Q_SAS = MAX(Q_SAS_Term1 - Q_SAS_Term2, 0.0); 
 
 
 dQ_SAS_dw = -2.0*(Q_SAS)/C_UDSI(c, t, OMG); 
 
  Source = P_w - Y_w + Q_SAS + D_w; 
 
    S_p = MIN(0, dQ_SAS_dw - (D_w + 2.0*Y_w)/C_UDSI(c, t, OMG)); 
 
 /* C_UDMI(c, t, 6) = Source; 
 
  C_UDMI(c, t, 7) = S_p;  */ 
 
  C_UDMI(c, t, 5) = Q_SAS; 
  C_UDMI(c, t, 6) = Q_SAS_Term1; 
  C_UDMI(c, t, 7) = Q_SAS_Term2; 
  C_UDMI(c, t, 8) = VortMag/StrainMag; 
  C_UDMI(c, t, 9) = VonKarmonLengthScale; 
  C_UDMI(c, t, 11) = 
C_S_SAS*CellLength*pow(VONKARMON_K*ETA_2/(beta/C_MU - alpha), 0.5); 
  C_UDMI(c, t, 12) = Mod_VonKarmonLengthScale; 
  C_UDMI(c, t, 13) = Omega_Dot; 
  C_UDMI(c, t, 14) = tke_Dot; 
  C_UDMI(c, t, 15) = C_MU_T(c,t)*StrainMag*StrainMag/P_k_Tilda; 
 
     dS[eqn] = S_p; 
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   return Source; 
 } 
/*===================Wall boundary====================== */ 
DEFINE_PROFILE(wall_d_bc,t,i) 
{ 
   Thread *t0; 
   face_t f; 
   cell_t c; 
   double omega_at_wall, wall_dist; 
   double C_mu, beta_i; 
   int wall_distance_was_zero = 0; 
   C_mu = 0.09; 
   beta_i = 0.09; 
  begin_f_loop(f,t) 
  { 
     t0 = THREAD_T0(t); 
  c = F_C0(f, t); 
   wall_dist = C_UDMI(c,t0,WDD_UDM); 
 
   if(wall_dist > 0.0) 
   { 
  omega_at_wall = 6.0*C_MU_L(c,t0)/(0.075*C_R(c, 
t0)*wall_dist*wall_dist); 
  } 
    else 
  { 
  omega_at_wall = C_UDSI(c,t0,OMG); 
  wall_distance_was_zero++; 
  } 
     F_PROFILE(f,t,i) = omega_at_wall; 
  } 
  end_f_loop(f,t) 

 
  if(wall_distance_was_zero > 0) 
  { 
   Message("Warning: wall distance has not yet been calculated and 
stored in C_UDMI(c,t,WDD)\n"); 
  } 
} 
/******************************************************************** 
UDF for placing limits on turbulent parameters 
*********************************************************************/ 
DEFINE_ADJUST(limit_k_omega, d) 
{ 
/* Domain *d; */ 
Thread *t; 
cell_t c; 
d = Get_Domain(1); /* mixture domain if multiphase */ 
thread_loop_c(t,d) 
{ 
 if (FLUID_THREAD_P(t)) 
 { 
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  begin_c_loop(c,t) 
  { 
/* 
  if(C_UDSI(c,t,TKE) < 1e-8){ printf("Low TKE Found: k=%8.3e, 
c=%d\n", C_UDSI(c,t,TKE), c); } 
  if(C_UDSI(c,t,TKE) > 1000){ printf("High TKE Found: 
k=%8.3e, c=%d\n", C_UDSI(c,t,TKE), c); } 
  if(C_UDSI(c,t,OMG) < 10){ printf("Low Spec. Dis. Found: 
w=%8.3e c=%d\n", C_UDSI(c,t,OMG), c); } 
*/ 
  if(C_UDSI(c,t,TKE) < MIN_TKE){ C_UDSI(c, t, TKE) = MIN_TKE; 
} 
  if(C_UDSI(c,t,TKE) > MAX_TKE){ C_UDSI(c, t, TKE) = MAX_TKE; 
} 
  if(C_UDSI(c,t,OMG) < MIN_OMG){ C_UDSI(c, t, OMG) = MIN_OMG; 
} 
  if(C_UDSI(c,t,OMG) > MAX_OMG){ C_UDSI(c, t, OMG) = MAX_OMG; 
} 
 
  /* C_O(c, t) = 1000.0; */ 
  } 
  end_c_loop(c,t) 
 } 
} 
 
} 
/******************************************************************** 
UDF finding f_k based on length scale - grid ratio 
*********************************************************************/ 
DEFINE_EXECUTE_AT_END(f_k_modeled) 
{ 
Domain *d; 
Thread *t; 
cell_t c; 
double CellLength, IntegralLength, dimension; 
d = Get_Domain(1); /* mixture domain if multiphase */ 
 
dimension = (double) ND_ND; 
 
thread_loop_c(t,d) 
{ 
 if (FLUID_THREAD_P(t)) 
 { 
  begin_c_loop(c,t) 
  { 
  C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
  C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
  C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
  C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
  CellLength = pow(C_VOLUME(c,t), 1.0/dimension); 
  IntegralLength = pow(C_UDSI(c, t, TKE), 
0.5)/(BETA_STAR_INF*C_UDSI(c, t, OMG)); 
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  C_UDMI(c, t, 3) = MIN(3.0*pow(CellLength/IntegralLength, 
2.0/3.0), 1.0); 
 
  } 
  end_c_loop(c,t) 
 } 
} 
} 
/******************************************************************** 
UDF finding f_k based on length scale - grid ratio 
*********************************************************************/ 
DEFINE_EXECUTE_AT_END(f_k_mean_k) 
{ 
Domain *d; 
Thread *t; 
cell_t c; 
int i; 
double total_k; 
double CellLength, IntegralLength, dimension; 
d = Get_Domain(1); /* mixture domain if multiphase */ 
 
dimension = (double) ND_ND; 
 
i=1; 
thread_loop_c(t,d) 
{ 
 if (FLUID_THREAD_P(t)) 
 { 
  begin_c_loop(c,t) 
  { 
 
  CellLength = pow(C_VOLUME(c,t), 1.0/dimension); 
  total_k = C_UDSI(c, t, 2);  /*  Mean tke from previous SST-
kw solution  */ 
  IntegralLength = pow(total_k, 0.5)/(BETA_STAR_INF*C_UDSI(c, 
t, OMG)); 
  C_UDMI(c, t, 3) = MIN(3.0*pow(CellLength/IntegralLength, 
2.0/3.0), 1.0); 
 
  /*  printf("read velocity %6.2f %6.2f %6.2f %6.2f\n", 
CellLength, total_k, IntegralLength, C_UDMI(c, t, 3));  */ 
  } 
  end_c_loop(c,t) 
 } 
} 
} 
/******************************************************************** 
UDF finding f_k based on length scale - grid ratio from Forotutan and 
Yavuzkurt 
*********************************************************************/ 
DEFINE_EXECUTE_AT_END(Savas_f_k_mean_k) 
{ 
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Domain *d; 
Thread *t; 
cell_t c; 
int i; 
double total_k, TIL_to_CellLength_Ratio, Term1, f_k; 
double CellLength, IntegralLength, dimension; 
d = Get_Domain(1); /* mixture domain if multiphase */ 
 
dimension = (double) ND_ND; 
 
i=1; 
thread_loop_c(t,d) 
{ 
 if (FLUID_THREAD_P(t)) 
 { 
  begin_c_loop(c,t) 
  { 
  C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
  C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
  C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
  C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
  CellLength = pow(C_VOLUME(c,t), 1.0/dimension); 
  total_k = C_UDSI(c, t, 2);  /*  Mean tke from previous SST-
kw solution  */ 
  IntegralLength = pow(total_k, 0.5)/(BETA_STAR_INF*C_UDSI(c, 
t, OMG)); 
  TIL_to_CellLength_Ratio = IntegralLength/CellLength; 
  Term1 = pow(TIL_to_CellLength_Ratio, 2.0/3.0); 
  f_k = (1.0 - pow(Term1/(0.23+ Term1), 4.5)); 
  C_UDMI(c, t, 3) = MAX(C_UDMI(c, t, 0), f_k); 
 
/*  printf("read velocity %6.2e %6.3f %6.2f %6.4f\n", 
C_VOLUME(c,t), total_k, C_UDSI(c, t, OMG), C_UDMI(c, t, 3));  */ 
  } 
  end_c_loop(c,t) 
 } 
} 
printf("Update Total f_k"); 
} 
/******************************************************************** 
UDF finding f_k based on length scale - grid ratio from Forotutan and 
Yavuzkurt 
*********************************************************************/ 
DEFINE_ON_DEMAND(OD_Savas_f_k_mean_k) 
{ 
Domain *d; 
Thread *t; 
cell_t c; 
int i; 
double total_k, TIL_to_CellLength_Ratio, Term1, f_k; 
double CellLength, IntegralLength, dimension; 
d = Get_Domain(1); /* mixture domain if multiphase */ 
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dimension = (double) ND_ND; 
 
i=1; 
thread_loop_c(t,d) 
{ 
 if (FLUID_THREAD_P(t)) 
 { 
  begin_c_loop(c,t) 
  { 
  C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
  C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
  C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
  C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
  CellLength = pow(C_VOLUME(c,t), 1.0/dimension); 
  total_k = C_UDSI(c, t, 2);  /*  Mean tke from previous SST-
kw solution  */ 
  IntegralLength = pow(total_k, 0.5)/(BETA_STAR_INF*C_UDSI(c, 
t, 3)); 
  TIL_to_CellLength_Ratio = IntegralLength/CellLength; 
  Term1 = pow(TIL_to_CellLength_Ratio, 2.0/3.0); 
  f_k = (1.0 - pow(Term1/(0.23+ Term1), 4.5)); 
  C_UDMI(c, t, 3) = MAX(C_UDMI(c, t, 0), f_k); 
 
/*  printf("read velocity %6.2e %6.3f %6.2f %6.4f\n", 
C_VOLUME(c,t), total_k, C_UDSI(c, t, OMG), C_UDMI(c, t, 3));  */ 
  } 
  end_c_loop(c,t) 
 } 
} 
printf("Update Total f_k"); 
} 
 
void uds_derivatives(Domain *d, int n) 
{ 
   /* Code to compute derivative of a variable.  Variable storage 
allocation first.... */ 
        MD_Alloc_Storage_Vars(d, SV_UDSI_RG(n), SV_UDSI_G(n), SV_NULL); 
        Scalar_Reconstruction(d, SV_UDS_I(n), -1, SV_UDSI_RG(n), NULL); 
        Scalar_Derivatives(d, SV_UDS_I(n), -1, SV_UDSI_G(n), 
SV_UDSI_RG(n), NULL); 
        return; 
} 
/******************************************************************** 
Calculate Q_SAS at the end of each iteration 
*********************************************************************/ 
DEFINE_ADJUST(Update_Vel_Deriv, d) 
{ 
/* Domain *d; 
  d = Get_Domain(1); */ 
 Thread *t; 
 cell_t c; 
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    int i, n; 
 
    thread_loop_c (t,d) 
 begin_c_loop (c,t) 
 
  C_UDSI(c, t, TKE) = MAX(C_UDSI(c, t, TKE), MIN_TKE); 
  C_UDSI(c, t, TKE) = MIN(C_UDSI(c, t, TKE), MAX_TKE); 
  C_UDSI(c, t, OMG) = MAX(C_UDSI(c, t, OMG), MIN_OMG); 
  C_UDSI(c, t, OMG) = MIN(C_UDSI(c, t, OMG), MAX_OMG); 
 
  for(i=0; i<3; i++){ 
   C_UDSI(c, t, 3+i) = C_U_G(c,t)[i]; 
   C_UDSI(c, t, 6+i) = C_V_G(c,t)[i]; 
   C_UDSI(c, t, 9+i) = C_W_G(c,t)[i]; 
  } 
 
 end_c_loop (c,t) 
 
/* Message("Finding Velocity Second Derivatives . . . \n");  */ 
 
    for(n=0; n<n_uds; ++n) uds_derivatives(d, n); 
 
 
 
} 
double coerce(double x, double min, double max) 
{ 
 double temp; 
 temp = MIN(x, max); 
 temp = MAX(temp, min); 
 return temp; 
} 
/******************************************************************** 
UDF finding f_k based on length scale - grid ratio 
*********************************************************************/ 
DEFINE_EXECUTE_AT_END(Update_Total_TKE) 
{ 
Domain *d; 
Thread *t; 
cell_t c; 
double U, V, W, total_k, tke_res; 
double dimension; 
d = Get_Domain(1); /* mixture domain if multiphase */ 
printf("Hi Mom!\n"); 
dimension = (double) ND_ND; 
 
thread_loop_c(t,d) 
{ 
 if (FLUID_THREAD_P(t)) 
 { 
  begin_c_loop(c,t) 
  { 
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  U = C_UDSI(c, t, 3); 
  V = C_UDSI(c, t, 4); 
  W = C_UDSI(c, t, 5); 
 
  tke_res = 0.5*(U - C_U(c,t))*(U - C_U(c,t)) + 
      0.5*(V - C_V(c,t))*(V - C_V(c,t)) + 
      0.5*(W - C_W(c,t))*(W - C_W(c,t)); 
 
  total_k = tke_res + C_UDSI(c, t, TKE); 
 
  C_UDSI(c, t, 2) = total_k; 
 
  } 
  end_c_loop(c,t) 
 } 
 printf("Update Total TKE"); 
} 
 
 
} 
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B. TIME AVERAGED PARAMETERS FROM TRANSIENT 

SOLUTIONS 

Details are of the time averaged transient results are presented in this section.  This 

includes the 10 sub-averages of the local Nusselt number used to find the overall 

averaged presented section 5.1  and 5.1.2.5.  In addition, the sub-averages for each 

portion of the object is also presented in this section.  Finally, the frequency domain of 

the velocity trace taken downstream from the object is provided. 
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Staggered tube bank SST detailed results 

 
Figure B.1 Averaged local Nusselt number for SST model 

 
Figure B.2  Averaged local Nusselt number by sector for SST model 
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Staggered tube bank SST-SAS detailed results 

 
Figure B.3  Averaged local Nusselt number for SST-SAS model 

 
Figure B.4  Averaged local Nusselt number by sector for SST-SAS model 
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Staggered tube bank RSM detailed results 

 
Figure B.5 Averaged local Nusselt number for RSM model 

 

 
Figure B.6  Averaged local Nusselt number by sector for RSM model 
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Staggered tube bank PANS-SST detailed results 

 
Figure B.7  Averaged local Nusselt number for PANS-SST model 

 
Figure B.8  Averaged local Nusselt number by sector for PANS-SST model 
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Staggered tube bank DES detailed results 

 
Figure B.9  Averaged local Nusselt number for DES model 

 

 
Figure B.10  Averaged local Nusselt number by sector for DES model 



www.manaraa.com

 

184 

Staggered tube bank LES detailed results 

 
Figure B.11  Averaged local Nusselt number for LES Model 

 

 

Figure B.12  Averaged local Nusselt number by sector for LES Model 
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Square in cross flow SST detailed results 

 
Figure B.13  Square in cross flow; averaged local Nusselt number for SST Model 

 

 
Figure B.14  Square in cross flow; averaged local Nusselt number by sector for SST 

Model 
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Square in cross flow SST-SAS detailed results 

 
Figure B.15  Square in cross flow; averaged local Nusselt number for SST-SAS Model 

 

 
Figure B.16  Square in cross flow; averaged local Nusselt number by sector:  SST-SAS 

Model 
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Square in cross flow RSM detailed results 

 
Figure B.17  Square in cross flow; averaged local Nusselt number for RSM model 

 

 
Figure B.18  Square in cross flow; averaged local Nusselt number by sector for RSM 

model 
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Square in cross flow PANS-SST detailed results 

 
Figure B.19  Square in cross flow; averaged local Nusselt number for PANS-SST Model 

 

 
Figure B.20  Square in cross flow; averaged local Nusselt number by sector for PANS-

SST Model 
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Square in cross flow DES detailed results 

 
Figure B.21  Square in cross flow; averaged local Nusselt number for DES model 

 

 
Figure B.22  Square in cross flow; averaged local Nusselt number by sector for DES 

Model 
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Square in cross flow LES detailed results  

 
Figure B.23  Square in cross flow; averaged local Nusselt number for LES model 

 

 
Figure B.24  Square in cross flow; averaged local Nusselt number by sector for LES 

model 
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